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The concept of spatial scale is fundamental to geography, as are the problems of integrating data obtained at different
scales. The availability of GIS has provided an appropriate environment to re-scale data prior to subsequent integra-
tion, but few tools with which to implement the re-scaling. This sparsity of appropriate tools arises primarily because
the nature of the spatial variation of interest is often poorly understood and, specifically, the patterns of spatial depen-
dence and error are unknown. Spatial dependence can be represented and modelled using geostatistical approaches
providing a basis for the subsequent re-scaling of spatial data (e.g., via spatial interpolation). Geostatistical techniques
can also be used to model the effects of re-scaling data through the geostatistical operation of regularization. Regu-
larization provides a means by which to re-scale the statistics and functions that describe the data rather than the data
themselves. These topics are reviewed in this paper and the importance of the spatial scale problems that remain is

emphasized. Key Words: geostatistics, re-scaling, sampling, scale.

Introduction

Scale is a fundamental concept in geography,
and it creates fundamental problems for
geographers. Spatial scale provides a link be-
tween a property distributed in space and its rep-
resentation, for example, as a map. Scale, there-
fore, provides key information on geographical
models, and it is this link between scale and mod-
elling which underlines the importance of scale
to geography. Although the problems of repre-
senting and integrating data at different scales
are well known, the continuing emphasis
placed on scale-related issues in human geogra-
phy (Amrhein and Wong 1996; Longley and
Batty 1996) and physical geography (Quattro-
chi and Goodchild 1997) suggests that prob-
lems remain. The widespread availability of
enabling technology such as GIS provides a
platform for the integrated use of multiscale
data, where “multiscale” refers to multiple scales
of measurement (e.g., different spatial resolu-
tions) and the potential for the user to re-scale
(that is, to change the scale of measurement of)
both the data and the model. Re-scaling re-
quires not only the selection of appropriate
models of multiscale spatial data variability—
which in turn requires knowledge about the scal-
ing characteristics of the property of interest—
but also appropriate methodologies and tools

to implement the re-scaling. As we shall show in
this paper, geostatistical techniques, and to a
lesser extent fractal techniques, can be used to ad-
dress several problems of data and model scaling.

The term “scale” is unfortunately an ambigu-
ous term often used to refer to both the amount of
detail and the spatial extent of a geographic cover-
age (Goodchild and Proctor 1997). Tradition-
ally, cartographic or map scale is reported as a
ratio or representative fraction between a unit
distance on the map and its equivalent distance
on the ground. This definition of scale is strictly
correct, but may lead to confusion, as 1:10,000
is a large scale in relation to 1:100,000 although
the number 10,000 appears smaller than 100,000.
A 1:10,000 scale map represents a larger scale
than a 1:100,000 map because the values are ra-
tios and 1/10,000 is a larger value than 1/100,000.
This apparently minor issue is exacerbated
when one considers the use of the word “scale”
in everyday language. When one talks of a
large-scale process, a large-scale phenomenon,
or a large-scale investigation, one simply means
a large process, phenomenon, or investigation.
In these examples scale is used simply to mean
size or extent, and is redundant. This contradicts
the definition of cartographic scale above. For
example, a map that covers the globe has a small
cartographic scale, but an investigation that
covers the globe is large-scale. The definition
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of scale synonymous with extent is used in dis-
ciplines such as physics, biology, and ecology. It
is this simpler definition of scale which we
adopt throughout this paper.

From the outset it is important to distinguish
two kinds of spatial scale, both of which are im-
portant. The first is concerned with the scales of
spatial measurement, and the second with the
scales of spatial variation present in data that result
from measurement. Both kinds of scale are of in-
terest in this paper and are, therefore, treated
fully in later sections. For the present we estab-
lish a conceptual framework which leads natu-
rally to the distinction between scales of spatial
measurement and scales of spatial variation.
(Concentrating on the spatial component by
no means implies that the temporal component
of spatial variation is any less important, but
rather is beyond the scope of this paper.) The
framework, illustrated in Figure 1, is a simple
one in which reality is always observed through
a particular spatial sampling framework to pro-
duce spatial data. Two important observations
follow from this. First, one can never observe
“reality” independent of some sampling frame-
work, so that what we observe is always a fil-
tered version of reality. Even the data that we
obtain directly through our senses (e.g., sight)
represent a filtered version of reality subject to
our perceptions. Second, since one can never
observe reality independent of sampling, the
scales of spatial variation alluded to earlier re-
late only to spatial data. Since spatial data are
obtained through sampling with particular
scales of measurement, the scales of variation
observable in spatial data are inextricably
linked to the scales of measurement through
which they were obtained.
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Figure 1: Conceptual model involving reality, the
sampling framework, and data (from Atkinson and
Tate 1999, reproduced with permission).

The conceptual framework outlined above
is of fundamental importance and has wide-
ranging implications for data acquisition and
modelling. This paper reviews recent literature
concerned with scale problems in geography.
In addition, to draw the reader’s attention to
the geostatistical operation of regularization, a
discussion is provided on the geostatistical
techniques for re-scaling data and data models.
In the second section, we consider the impor-
tance of spatial scale in geography, while in the
third section we introduce scales of measure-
ment. In the fourth section, we consider scales
of variation in spatial data and the modelling of
spatial variation, with a focus on models of
second-order properties. Finally, in the fifth
section, we discuss some approaches to chang-
ing the scale of measurement.

Spatial Scale in Geography

Within geography, spatial scales of inquiry
range conservatively from 10~? to 10° m. Geog-
raphers have long been aware of the sensitivity
of spatial data to the scale of measurement
(e.g., Harvey 1969) and the utility of a multi-
scale approach to description (e.g., Stone 1972).
However, the recent availability of tools such as
GIS and enhanced computing power has facili-
tated the multivariable and multiscale analysis
and integration of spatial data. This in turn has
led to a focus on scale issues and concern with
the nature of spatial variability in disciplines
such as remote sensing (Woodcock and Strahler
1987; Quattrochi and Goodchild 1997), land-
scape ecology (Turner et al. 1989), geomor-
phology (Phillips 1988) and hydrology (Bloschl
and Sivapalan 1995).

It is generally accepted that nearly all envi-
ronmental processes are scale-dependent (e.g.,
Davis et al. 1991; Davis and Simonett 1998). In
conjunction with a particular scale of measure-
ment, this will influence the observed magni-
tude of spatial variation. Resultant patterns of
spatial variation will often possess a nested mul-
tiscale (Burrough 1987, 1993) or hierarchical
structure (Urban et al. 1986; King 1991; De
Boer 1992). Different scales of measurement
(e.g., different spatial resolutions) reveal vari-
ables to be homogenous at one scale yet heter-
ogenous at another, regular at one scale yet ir-
regular at another. Heterogeneity can also be
increased simply by increasing the spatial ex-



tent of the study area (Haining 1989; King
1991). The presence of scale-dependent heter-
ogeneity and irregularity is important in two
main contexts: 1) defining a suitable scale range
for a given investigation (e.g., a range of spatial
resolutions which will reveal the variation of
interest), and 2) characterizing the nature of
the spatial variation so that the scales of mea-
surement may be changed—that is, so that the
data may be re-scaled.

Often it is desirable to focus on a particular
scale of spatial variation that results from a spe-
cific process. In such circumstances, not all
available scales of measurement need to be
considered. It would be perfectly appropriate
to represent topography as a smooth contour
map at the drainage basin scale, but this would
be inappropriate for examining sheet flow on
an individual hillslope unit. De Boer (1992)
noted that the practical choice of a scale range
of interest is usually dictated in terms of a pre-
determined scale of the system under study and
the overall objective of the investigation. In this
context, certain scales will be important while
others can effectively be ignored, since an impli-
cation of the existence of scale-dependent pro-
cesses is that for sufficiently different measure-
ment scales spatial patterns are independent
(Phillips 1988). This leads to a fundamental
question that has been raised in geomorphology
(De Boer 1992), remote sensing, and GIS (Davis
etal. 1991; Atkinson and Curran 1995): what are
the optimal measurement scales for the investi-
gation of a specific problem?

Often, there is a need for data sampled at one
scale or location to be extended or generalized
to other scales or locations and perhaps (e.g. in
the context of a GIS) combined with other data.
However, the existence of scale-dependent
spatial variation makes the processes of data
re-scaling and data integration problematic.
In particular, the commonly employed tech-
niques of averaging, smoothing, extrapolat-
ing, and interpolating to different scales of
measurement are hazardous, particularly
when combined with other problems such as
replacing missing data (e.g., Bennett et al.
1984). In fact, the presence of scale-dependent
heterogeneity has been recognized as provid-
ing a fundamental constraint on the compari-
son of multiscale phenomena in fields such as
landscape ecology (e.g., Turner et al. 1989;
Turner and Gardner 1991) and for the integra-
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tion of remote sensing and GIS data (Quattro-
chi and Lam 1991).

Although a distinction has been made above
between the choice of a scale range for a given
analysis and the problems of practical data inte-
gration, they are in fact related elements of the
same problem. Ideally, information on the sca/-
ing properties of environmental variables should
act as a guide for both the acquisition of appro-
priate data and any subsequent multiscale and
multivariable integration of such data. In prac-
tice, such information is often unavailable.
This is partly because the specific pattern of
spatial dependence (often referred to as autocor-
relation) may be unknown or unique to a site or
region, making it difficult to generalize (Davis
etal. 1991). Further, within a nested hierarchi-
cal system, such as the ecological landscape, the
dynamics and pattern at the landscape scale are
often the result of interactions among lower-
level systems (Urban et al. 1986; O’Neill et al.
1991), producing a scale differential problem
sometimes referred to as the dichotomy of scale
(Mark 1980) or simply as the scale or scaling
problem (Harvey 1969; Jeffers 1988). Therefore,
there is often a need to address processes and
patterns at a variety of scales, using either a com-
bined top down, scaling down, or downscaling ap-
proach analyzing spatial pattern at the land-
scape scale or a bottomn up, scaling up, or upscaling
approach assembling the landscape from indi-
vidual finer spatial resolution process-based com-
ponents (e.g., Urban et al. 1986; King 1991).
The linkages across scales that are required for
a multiscale approach are summarized in Fig-
ure 2. Indeed, in the context of landscape ecol-
ogy, Milne (1991) suggested that a key to un-
derstanding heterogeneity was to conduct the
analysis across a wide range of measurement
scales and to extract parameters that are 7obust to
changes in scale. In a similar context, King (1991)
recognized two main challenges: 1) the definition
of spatial heterogeneity, and 2) the correct inte-
gration and aggregation of data. As we show
below, geostatistical techniques allow us not
only to conduct analysis across a range of scales,
but also to model spatial heterogeneity and
re-scale both the data and the model to allow
integration.

To illustrate the concepts addressed in the
following sections we provide an example. The
data used in the example are taken from Atkin-
son (1999) and Stein et al. (1999). These data
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Figure 2: Graphical representation of the processe
Sivapalan 1995, reproduced with permission).

are a Landsat Thematic Mapper (T M) image of
part of the Netherlands. Details of the full Land-
sat TM image are given in the Stein et al. (1999)
reference. The full image consists of seven
wavebands, with each waveband consisting of
1,130 columns and 960 rows. The image covers
Enschede just southeast of the centre, Hengelo
just northwest of the centre, Gronau to the
east, and Oldenzaal to the northeast.

One of the available seven wavebands in the
red (0.63 pm-0.69 wm) wavelengths was se-
lected for study to reduce redundancy between
the multiple wavebands and to simplify the

Figure 3: Landsat TM red waveband subimage of
Enschede, The Netherlands.

s of upscaling and downscaling (from Bléschl and

presentation. Only a small subset of the origi-
nal image was considered for analysis: a 128 by
128 pixel subset covered entirely by the urban
area of Enschede (Fig. 3). A histogram of the
subset image, which is approximately Gaussian,
is shown in Figure 4.

Scales of Measurement

The scales of measurement are determined by
the sampling framework (or strategy). The
sampling framework can itself be divided into
the spatial or geometrical characteristics of
each individual observation and the spatial cov-
erage of the sample.

A Single Observation

The size, geometry, and orientation of the
space on which an observation is defined is
known in geostatistics as the support (Matheron
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Figure 4: Histogram of Landsat TM red waveband
subimage (from Atkinson 1999, with kind permission
of Kluwer Academic Publishers).



1965). This concept is entirely general. Image
pixels in data defined within the raster data
model are a good example of a support. Simi-
larly, zones used in the UK census of popula-
tion, such as Enumeration Districts (EDs) and
wards, represent supports for the single values
(e.g., population count) often associated with
them. In the former case the support is fixed,
while for many kinds of census data the support
is variable. The variable support encountered
in census data leads to the well documented
Modifiable Areal Unit Problem (MAUP)
(Openshaw 1984; Amrhein and Wong 1996;
Longley and Batty 1996). The MAUP is com-
prised of two components: an aggregation prob-
lem (central to the present paper) and a zona-
tion problem. It arises because census data are
defined for a support that varies from observa-
tion to observation. The size of support is sim-
ilar to the spatial resolution of raster-based im-
agery except that the former relates to single
observations while the latter is a function of
multiple observations.

The support is an important concept because
it is a fundamental scale of measurement
(Moellering and Tobler 1972; Thornes 1973;
Openshaw 1984). The effect of the support on
the scales of natural variation that are detected
has been demonstrated most notably in physi-
cal geography and, in particular, remote sens-
ing (e.g., Clark 1990; Séze and Rossow 1991)
and in human geography through the MAUP
(e.g., Openshaw 1984). To understand how the
support, as a scale of measurement, affects the
scales of spatial variation that are detectable
from such measurement, it is necessary to exam-
ine how the support interacts with the under-
lying spatial variation to produce a single value.

In practice, values are derived through mea-
surement over a support v, a finite element of
space with a specific size, geometry, and orien-
tation. Therefore, assuming a continuous ran-
dom field, an observation z,(x,) may be treated
as a realization of the random variable (RV),
Z,(x,), which is the spatial mean or integral of Z
over v centered on x,. Formally:

1
Z(x) = = | Zy)dy 1)
o(x,)
where Z(y) is the property Z defined on a punc-
tual (point) support. The important point is
that the underlying spatial variation is averaged
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over the support to produce a single mean value.
A continuous random field is assumed to keep
notation consistent, but other models (e.g.,
models for point processes; Bailey and Gatrell
1995) could be treated in a similar way (e.g.,
census data are averages over the space repre-
sented by EDs, wards, and so on, even though
the individuals could be treated as representing
points).

The support may also vary in shape and ori-
entation. For example, for remotely sensed im-
agery (e.g., the Landsat TM image of Enschede)
the support may be approximated by a Gaussian
or bell-shaped centre weighting function (known
as the point-spread function) such that underly-
ing spatial variation at the centre of the support
receives more weight than that towards the
edges. Where the support has an anisotropic
shape—that is, the support varies with the
angle of orientation—the orientation in which
the support is placed may be important.

Spatial Sampling
The support is only one aspect of the spatial
sampling framework. Three further important
components of a sampling framework are the
sampling scheme, sampling density, and sample size.
The sampling scheme refers to the spatial pat-
tern of the sample observations. Examples of
sampling schemes are the random, stratified
random, and systematic (including square grid
and equilateral triangular) schemes. The sam-
pling density refers to the number of observa-
tions per unit area. Finally, the sample size is
the total number of observations. Collectively,
the sampling scheme, sampling density, and
sample size define the spatial coverage: the set of
distance and direction vectors between the ob-
servations of the sample. For remotely sensed
imagery, complete cover is provided; for a given
area on the ground, the sampling framework is
determined largely by the spatial resolution.
Note that two scales of measurement are
identified. The first is the support and the sec-
ond is the spatial coverage of the sample. The
importance of these scales of measurement will
become clear when spatial variation is exam-
ined in the context of spatial dependence.

Spatial Variation

In spatial statistics, variation in spatial data is de-
scribed most simply through its first-order and



612 Volume 52, Number 4, November 2000

second-order properties. The first-order prop-
erty of interest here is the mean, while the sec-
ond-order properties of interest are the disper-
sion (or sample) variance D*(v,}) (representing
the variation between all data v within V") and
the covariance function C(h) (representing the
variation between pairs of data [v,v;] at specific
distance and direction vectors of separation
or lags h). We can model a set of observations
distributed spatially as a regionalised variable
(ReV), a realization of a spatial set of RVs
known as a random function (RF). In simple
terms, a RF is a spatial set of cumulative distri-
bution functions (cdfs) from which the sam-
ple data are assumed to be drawn. The first-
and second-order properties relate to the RF
from which the realization (sample) is supposed
to have been drawn. That is, the mean and co-
variance are parameters of the RF model, not

the data.

Stationarity

Where the mean and covariance are constant
from place to place, the RF is said to be second-
order stationary. Second-order stationarity is
an important requirement of certain statistical
techniques, which collectively are referred to as
“time-series” analysis and which are often ap-
plied to spatial data (e.g., spectral analysis).
This condition of second-order stationarity al-
lows the pooling together of observations taken
at different locations in space (Journel 1993).
Unfortunately, samples of spatial data are often
not stationary, and possess trends in the mean
and a variance that increases with the extent of
the region of study (Haining 1989). Where the
mean is non-stationary and a trend is implied,
it may be possible to remove this first-order ef-
fect by subtracting a trend surface from the
data. However, since stationarity sensu stricto is
a property of the RF and not the data (Myers
1989) it is untestable from sample data. For ex-
ample, it is not possible to know whether the
spatial variation observed in data is due to first-
or second-order effects. Thus, the choice of RF
model may be seen as somewhat arbitrary. Es-
sentially, a model with a stationary mean and a
large variance or a model with a non-stationary
mean and a small variance could be chosen.
Generally, we can detect suggestions that a non-
stationarity model may be appropriate using
various spatial exploratory data analysis (EDA)
techniques such as the variogram cloud (Gun-

nink and Burrough 1996). With this constraint
in mind, we concentrate on second-order prop-
erties in this paper.

The reason for concentrating on second-
order properties is that a single datum is usually
not informative. If we have a single datum with
a given value (let us say 97), it contains strictly
zero information on its own. We might per-
ceive it as informative only if we have an « priori
framework or context in which to understand
the datum. Thus, if we know that the value rep-
resents the percentage of people who voted
Liberal Democrat in the 1997 UK election,
then we would recognize the value as large rel-
ative to the expected value. Without such a
context, the value is not informative. That is,
information exists in the relations betrween mea-
surements and not in them. The same reason-
ing applies if the value represented a single ele-
vation spot height: it is meaningless alone, and
only informative in combination with other
values. Since second-order properties are con-
cerned with the relations between data, the
second-order properties of spatial data hold a
special significance.

Spatial Dependence and the Variogram

Spatial dependence is the likelihood that obser-
vations close in space are more alike than those
further apart. This observation is generally
known as Tobler’s first law of geography (Tobler
1970; Goodchild 1987). Most geographic phe-
nomena distributed spatially over the surface of
the Earth are spatially dependent, at least at
some scale. The ubiquity of spatial dependence
in geographic variables at a variety of measure-
ment scales has been detected in geomorpho-
logical data (Robert and Richards 1988; Oliver
et al. 19892,1988b; Bian and Walsh 1993), soil
data (Webster 1985), ecological data (Rossi et al.
1992), remotely sensed images (Atkinson and
Curran 1995), and epidemiological data (Ol-
iver 1996). It is important to emphasize that
spatial dependence is intuitively necessary; if
properties were spatially independent and un-
correlated at all scales, all realizations (or ob-
served values) at all places would be the same.
There would be no form or structure, which
would imply an absence of process.

Here we represent spatial dependence with a
function known as the variogram (related to
the covariance function by y(h) = C(0) — C(h)).
The semivariance is defined as half the ex-



pected squared difference between the RFs
Z(x) and Z(x + h) ata particular lag h (Matheron
1965). The variogram y(h) defined as a param-
eter of the RF model is then given by:

¥(h) = JEHZ0 - Zx+ b} Q)

Developed as a tool for ore-reserve estimation,
the variogram is based on a weaker assumption
of stationarity than the covariance known as in-
trinsic stationarity of the RF: essendally, sta-
tionarity of the differences Z(x) — Z(x + h), with
the value of y(h) dependent only on h. The var-
iogram is in fact part of a wider body of statisti-
cal techniques known as geostatistics with
which geographers are now familiar (Oliver et
al. 1989a, 1989b). Geostatistics appears most
often in quantitative geography in the form of a
technique for estimation known as kriging,
most commonly used for spatial interpolation
(e.g., Oliver and Webster 1990). The sample
(or experimental) variogram may be obtained
from P(h) pairs of sample data at lag h {z,(x)), z,
(x; + h),7=1.23,. ..., P(h)} defined on sup-
ports v of size | v | by:

P(h)

v.(h) = ZPIWZI {2.00) = 2,05, + W} 2 0)

Directional variograms for four different
orientations were estimated for the Landsat
TM red waveband image of Enschede (Fig. 5).
The orientations are given on the figure. There
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Figure 5: Directional variograms of Landsat TM
image in the red waveband at a pixel size of 30 m
(from Atkinson 1999, with kind permission of Kluwer
Academic Publishers).
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Figure 6: Sample variogram of Landsat TM image in
the red waveband at a pixel size of 30 m fitted with a
nested exponential model (from Atkinson 1999, with
kind permission of Kluwer Academic Publishers).

is little variation between the variograms for
different orientations. For this reason, it was
considered appropriate to estimate an omnidi-
rectional variogram representing all orienta-
tions simultaneously (Fig. 6, discrete symbols).

Modelling the Sample Variogram

For most geostatistical procedures, a mathe-
matical model must be fitted to the sample var-
iogram. The model must be conditional nega-
tive semi-definite (CNSD) to ensure that all
possible linear combinations of the RF de-
scribed cannot be negative, and for most appli-
cations the model is selected from several that
are known to be CNSD or “authorized” for the
dimensions of the space over which the RF is
defined. Examples of the more common models
expressed mathematically and graphically are
presented by Webster and Oliver (1990), and
five of them can be seen in Figure 7.

In most cases, the model fitted to a sample
variogram approaches and intercepts the ordi-
nate at some positive finite value known as the
nugget variance ¢, (Fig. 7a). The nugget variance
is due to unresolved variation including mea-
surement error, but it may also arise from sam-
pling uncertainty in estimating the variogram
and uncertainty in model fitting. It has been
suggested that where the observations are adja-
cent (as with the raster data model) or over-
lapping (as with remotely sensed imagery) the
nugget variance may be used as an estimate of
measurement error (Curran and Dungan 1989;
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(b) Spherical model
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Figure 7: Five variogram models represented graphically. Three power models are shown.

Atkinson 1993). The nugget effect model is
one in which the semivariance is constant for
all lags (Fig. 7a) and on its own rarely provides
a satisfactory fit to sample variograms.

In general, there are two types of model, re-
ferred to as unbounded and bounded, which
may be fitted to the sample variogram. For un-
bounded models, the semivariance increases
indefinitely with lag. The power model (Fig.
7e), of which the linear model (Fig. 7e, straight
line) is one case, is an example of an unbounded
model. For bounded models, the semivariance
reaches a maximum known as the si//, at a fixed

lag known as the range 2 (Fig. 7a—d). The sill
represents the # priori variance D*(v,%0), and this
includes variation due to measurement error.
The term ¢, (where ¢, + ¢, = sill) is referred to
as the structured variance and represents spa-
tial variation that is spatially dependent at some
scale.

The range # and shape of the variogram
model can be used to infer the scales of spatial
variation present in the sample data. In partic-
ular, the range relates to the maximum scale of
spatial variation, while further, “smaller” scales
of spatial variation may be implied by the shape



of the model. For example, the exponential var-
iogram model seen in Figure 7c is given by:

y(b) = 1 — exp(—h/r) for0<h (4
yh) =0
where # = | h | for isotropic variation, and 7 is

the distance parameter of the model such that
an effective range 4’ may be computed as 2’ =
37 This model implies a distribution of scales
of spatial variation, as opposed to a single pre-
dominant scale of variation. Further, variogram
models are additive, so that several authorized
models may be added to provide a close ap-
proximation to the sample function. This im-
plies that it is possible to have nested models,
each with its own range representing a differ-
ent scale of spatial variation (Webster and
Oliver 1990). For example, the nugget variance
of most fitted models is achieved by adding the
nugget effect model to another type of model.
The important point is that the variogram in-
forms us about the scales of spatial variation in
sample data.

The variogram of the Landsat TM image of
Enschede was fitted with several authorized
models by weighted least squares approxima-
tion using the Splus™ software. The double
(nested) exponential model provided the best
fit. The fitted model, together with the coeffi-
cient values, is shown in Figure 6.

Scale Independence and Fractals

The term fractal is a neologism coined by Man-
delbrot (1967) to describe irregular patterns
that possess no clear scale of variation. Al-
though there are many types of fractals, at the
most basic, a fractal object possesses a pattern
which repeats either exactly or statistically as
the scale of observation changes, a trait termed
self-similarity. Further, the degree of irregular-
ity of a fractal form is usually expressed in
terms of fractal dimension D, which possesses a
non-integer value in between the more familiar
topological dimensions. For example, a fractal
curve such as a coastline possesses a dimension
in between the topological dimension D, = 1 of
a line and D, = 2 of an area. The magnitude
of D is determined by the degree to which the
fractal object is more irregular or “space fill-
ing” than a simple straight line.

Fractals can be defined in terms of the vario-
gram. The variogram models in Figure 7e are
of a power law form, yet they also describe one-

Spatial Scale Problems 61§

dimensional fractal or fractional Brownian
functions of the form:

y(b) = 0.554-2D) )

Within geography, and particularly physical
geography, there has been considerable effort
expended on both the detection of fractal forms
and the estimation of D using the variogram-
based method (Chase 1992; Klinkenberg and
Goodchild 1992; Bian and Walsh 1993; Bur-
rough 1993). Indeed, fractal patterns have been
detected in an increasing range of both physical
and human geographical contexts (e.g., Lam
and DeCola 1993; Batty and Longley 1994).
The importance of fractals to issues of scale
cannot be understated, for two main reasons.
First, the presence of fractals in geographic
patterns would appear to imply an absence of
scale-dependent processes. The incongruence
of this with accepted process understanding has
led some to speculate that spatial patterns are
only fractal between certain size limits (Mark
and Aronson 1984) and that fractals may be
limited to a kind of null hypothesis model of
the absence of scale-dependencies to test against
reality (Goodchild 1988). Alternatively, the
chaotic forms produced by non-linear processes
also possess a fractal structure, and it is tempting
to relate fractal patterns detected in geographical
data to some chaotic process regime. Whether
or not this is the case remains to be seen.
Second, and perhaps more important from
the perspective of this paper, fractals are a
model of underlying spatial variation which is
independent of the sampling framework. If wished,
fractal models could be used to simulate spatial
variation, which could then be sampled with a
given sampling framework to create data. All
other models of spatial variation are fixed at a
given scale of measurement. Similarly, in terms
of the MAUPD, if variables with a fractal spatial
pattern can be identified, not only might the
magnitude of fractal dimension provide useful
information on the rate of change of scale, but
these variables would be insensitive to re-
scaling, and the choice of spatial units for the
representation of data (Fotheringham 1990).
The pace of fractal research has slowed down
in recent years, perhaps due to some contro-
versy over how fractal dimensions should be
computed (Klinkenberg and Goodchild 1992).
Further, fractals have often been used only to
model surface roughness (Xu et al. 1993) or for
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simulation (Tate 1998). In spite of this, no other
mathematical model has provided as realistic a
description of the underlying spatial variation
and forms found in nature (Barnsley 1989).

Changing the Scale of Measurement

In the previous two sections, scales of measure-
ment and scales of spatial variation were consid-
ered. In this section, the emphasis is on changing
the scale of measurement, and how different
scales of measurement affect the scales of spa-
tial variation which are observed.

Scaling the Data

It is possible to directly compare point mea-
surements of one variable with area data (say,
raster-based imagery) of another variable. The
situation arises commonly in remote sensing,
where the property to be estimated at the
ground is measured on supports that are very
small in relation to the pixels of the imagery. It
is also increasingly common in GIS. However,
the simple correlation coefficient between the
two variables will be expected to be small where
there is much variation within the larger sup-
ports. If the objective is to model the relation
between the two variables (e.g., with regres-
sion) and use it to predict the point variable at
unobserved locations, the accuracy of the pre-
dictions may be low. This strategy is not rec-
ommended and some attempt should be made

is 1 m and the area data are remotely sensed im-
agery with a support or spatial resolution of 1.1
km (by 1.1 km) (as for National Oceanographic
and Atmospheric Administration [NOAA]
Advanced Very High Resolution Radiometer
[AVHRR] imagery). It is clear that complete
coverage of the 1.1 km support (referred to as a
ground resolution element or GRE) with 1 m
observations would be near impossible (requir-
ing over 1.2 m observations). Therefore, to es-
timate the mean value for each of several 1.1
km areas one should sample within the larger
areas (Fig. 8).

Assume that the only data available are a ran-
dom spatial sample of the property of interest
distributed within the entire scene and defined
on a support of 1 m. The problem then is that
one does not have a spatial sample within each
larger support, and therefore it is not possible to
average the variation to estimate mean values.
Therefore, alternative approaches including
techniques for interpolation must be considered.
The technique briefly described here is block
kriging (Burgess and Webster 1980). Block
kriging is the form of kriging used to estimate
over supports or domains larger than that of the
original observations. As such it offers the po-
tential to re-scale data, for example, in a GIS.

An estimate for the larger support B is calcu-
lated from a weighted average of known point
values (Oliver 1996; Webster 1996):

to re-scale or “scale up” the point measure- N
ments before comparison. Z(B) = Az, (x,) ©)
. . ~v 7
Assume that the support of the point variable i=
ﬂaaﬂa
Samples per ground ————>=> " <~
resolution element
Ground resolution elements — /
to be sampled - = Z =, “ 5
g Pg aa <
g <= 470 g < g <
e =4 = ~—— Study area
Pod <z 5 & pe
=4 e < ~

Figure 8: Diagrammatic representation of the need to sample at the ground within the larger supports
of the image pixels to obtain averages which may then be related to the image data (from Curran and
Williamson 1985, with kind permission of Taylor and Francis, http.//www.tandf.co.uk/journals).



where the \; are the weights. Kriging is statisti-
cally unbiased in that the weights in Equation
(6) sum to 1, and is optimal in the sense that the
weights are chosen to minimize the estimation
variance given by:

&’ (B) = E[{Z(B) - Z(B)} '] )

which we can re-express in terms of the semi-

variance to give:

N

AA (%, B) ®)

i=1

6. (B) =

N
> Ay(xy x) — (B, B)

1j=1

Mz

i

where vy(x,,x) is the semivariance between sam-
pling points x; and x, ¥(x,B) is the average
semivariance between the ith sampling point
and the larger cell B, and ¥(B,B) is the average
semivariance within B (Oliver 1996; Webster
and Oliver 1990). The term on the left of

Equation (8) is minimized when

N

Z Ay x) + ¥ = 3(x, B) forallj (9)

where the parameter ¢ is the Lagrange multi-
plier required for minimization. Solving the
above equations to obtain the weights A; is the

basis of kriging where +y(v,x), ¥(x,B) and
Y¥(B,B) can be obtained from the variogram
model representing the sample data. Block
kriging is optimal (in a linear sense) because it
accounts for the form and scale of spatial de-
pendence in the property of interest as repre-
sented with the variogram. Further, block krig-
ing automatically accounts for the size of support
of the estimate. Block kriging may, therefore,
seem an ideal choice for data re-scaling.

A major problem is that kriging involves
smoothing, where the term “smoothing” is
used to mean averaging independent of that
which occurs naturally through integration
over the support. Smoothing occurs because
information from neighboring observations is
used in the averaging process, effectively ex-
tending the support out to these data. Thus,
problems occur when the estimated values are
related to a second variable, such as the remotely
sensed imagery. As a result of smoothing, the
cdf of the ground variable and the bivariate dis-
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tribution function (bdf) with the remotely
sensed variable will be altered: the cdf will have
a reduced variance in relation to the true cdf
defined on a support of 1.1 km, and the bdf will
reflect this change. One suggested solution to the
problem of smoothing discussed above involves
regularizing the variogram. Regularization is dis-
cussed in the next section, and we return to the
problem of smoothing in the discussion.

Scaling the Model

Most readers will be familiar with the kriging
described above. The geostatistical operation
of regularization, described in this section, al-
lows us also to scale the RF model rather than
the data. Geostatistical regularization is impor-
tant because it provides a succinct model of the
process of re-scaling data.

The sample variogram of some variable is it-
self defined for a support of given positive (that
is, non-zero) size. If it were measured on a differ-
ent size of support, it would have a different form
and would imply a different set of scales of spatial
variation. Therefore, it is important to know the
support for which the variogram is defined.

Two sets of variograms that were computed
from airborne multispectral scanner system
(MSS) data in wavebands in the red (0.63-0.69
pm) (Fig. 92) and near-infrared (0.76-0.90 pm)
(Fig. 9b) wavelengths, and at two spatial resolu-
tions of 1.5 m (upper curves) and 2 m (lower
curves) (Atkinson 1993) are shown in Figures 9a
and 9b respectively. The variograms are fitted
with the exponential model. The effect of
coarsening the spatial resolution is to remove
short-range variation from the variograms so
that the semivariance generally decreases. The
variograms representing a spatial resolution of
2 m then describe the longer-range variation
that remains.

It would be very useful if the effect of the
support on the variogram (and, therefore, on
measurable scales of variation) could be mod-
elled. Fortunately, the effect of imposing the
support of the sampling frame on the underlying
variation can be modelled using the variogram.
The relaton between the punctual or “point”
semivariance and the regularized (defined on a
support of positive size) semivariance at a lag h
is given (Journel and Huijbregts 1978) by:

Yo(h) = ¥(v,0) = ¥(v,0)

where ¥(v,v,) is the integral of the punctual
semivariance between two supports of size | v |

(10)
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Figure 9: Sample variograms for the (a) red and (b) nearinfrared wavebands obtained at spatial
resolutions of 1.5 m (upper curves) and 2 m (lower curves) (from Atkinson 1993, with kind permission of

Taylor and Francis, http.//www.tandf.co.uk/journals).

whose centroids are separated by h, given for-
mally by

oo = L] | v ivay

V™ vo(h)

(11)

where y describes an observation of size | v |
and y’ describes independently another obser-
vation of equal size and shape at a lag h away.
The quantity ¥(v,v) is the average punctual
semivariance within an observation of size | v |
and is written formally as

L[]yt yaydy

vv

y(v,v) = (12)

where y and y’ now cover the same pixel
independently.
Given Equation (10), it should be possible to

regularize the variogram—that is, increase the
size of support on which it is defined—to new
larger sizes of support without measuring on
that new support. The support must be approx-
imated discretely to allow the integration of the
semivariance between cells. The method pro-
vides estimates of the regularized semivariance
at several discrete lags to which a mathematical
model may then be fitted. Thus, the geostatis-
tical operation of regularization embodied in
Equation (10) provides an appropriate model
for the re-scaling of spatial variation. Since no
measurement is required except on the original
support, it amounts to scaling the model rather
than the data.

In certain circumstances—for example, for
core samples in soil survey—the sample sup-
port may be so small in relation to the new sup-



port that Equation (10) may be used directly. In
most circumstances (for example, where the
spatial resolution of remotely sensed imagery is
the coarsest possible for the particular sampling
density) it may be necessary first to estimate the
punctual or point variogram by deregulariza-
tion. Atkinson (1995) validated such an ap-
proach using airborne multispectral imagery
obtained at six different spatial resolutions.

As an example, the modelled variogram in
Figure 6 (defined for a pixel size of 30 m by 30 m)
was deregularized to estimate the punctual var-
iogram (that for a point support) by trial and
error. The procedure is different to that of At-
kinson (1995) and Atkinson and Curran (1995)
and is as follows. First, an exponential model
was chosen for the punctual variogram. Next, a
value was chosen for the non-linear parameter.
With this parameter fixed, the Splus™ code
was used to fit iteratively the sill of the expo-
nential model using Equation (10). An initial
sill value was provided by the user, the punctual
model was regularized to obtain estimates for
lags between 300 m and 750 m and the average
difference for these 15 lags was used to estimate
a new sill as {c,0y = Coa T AVE(Yyuyh) —
Yoey@)}. The process was repeated (about five
iterations were usually sufficient) with the most
recently estimated sill as input for the next iter-
ation until a satisfactory fit was obtained. Visual
inspection of the fitted models allowed the
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Double exponential model:
c0=0.0 ¢1=37.03 a1=1.25 ¢2=12.25 a2=9.31
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Figure 10: Sample variogram of Landsat TM image
for the red waveband at a pixel size of 30 m fitted
with a punctual model (upper solid curve) and
regularized to the original pixel size of 30 m (lower
dashed curve) (from Curran and Atkinson 1999, with
kind permission of Kluwer Academic Publishers).
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whole process to be repeated with new esti-
mates for the non-linear parameters of the
models. The resulting punctual model and its
coefficients are shown in Figure 10, together
with the original sample vanogram (discrete
symbols) and the regularized estimates obtained
from the punctual models (lower dashed curves).

Once a satisfactory punctual model was fit-
ted, it was possible to regularize the punctual
variogram to any desired pixel size using Equa-
tion (10). The variogram was regularized to pixel
sizes of 80 m by 80 m and 260 m by 260 m: 80 m
represents approximately the pixel size of Land-
sat MSS imagery and 260 m represents that of
the delete Medium Resolution Imaging Spec-
trometer (MERIS) sensor. These regularized
variograms are shown along with the punctual
models from which they were obtained as the two
lower dashed curves in Figure 11. Clearly, the
variation one would observe in MERIS data is
very different to that observable in Landsat TM
and Landsat MSS imagery. This has implications
for the kinds of analysis and the set of techniques
that might be applied to the new imagery.

In summary, the relationship in Equation
(10) provides a means by which to assess the ef-
fect of size, shape, and orientation of support
on the nature and scale of measured spatial
variation (Clark 1977; Jupp et al. 1988, 1989;
Atkinson 1993). As such, Equation (10) sup-
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Figure 11: Sample variogram of Landsat TM image
for the red waveband at a pixel size of 30 m fitted
with a punctual model (upper solid curve) and
regularized to pixel sizes of 80 m (middle dashed
curve) and 260 m (lower dashed curve) (from
Curran and Atkinson 1999, with kind permission of
Kluwer Academic Publishers).
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ports the conceptual model embodied in Fig-
ure 1. Equation (10) implies that the only spa-
tial variation detectable from the sample values
(made on a support v) is that described by the
term ¥(v,v). The variation described by ¥(v,v),
the within-block variance, is completely ob-
scured from analysis by integration over the
support as described in Equation (1). From
Equation (10), the effect of regularizing spatial
variation over the support is to remove small-
scale (that is, short-range or high frequency)
variation in favor of large-scale variation occur-
ring within the spatial extent of the sampling
frame. If much of the variation is small-scale in
relation to the support, then much variation
will be removed. If, on the other hand, most
variation is large-scale in relation to the sup-
port, then only a small amount of variation will
be removed. The importance of Equation (10)
has to do with more than understanding the ef-
fect of the support and regularizing the vario-
gram. Summary statistics such as the dispersion
variance D*(v,)") and a priori variance D*(v,%),
and simulations may be produced from the reg-
ularized variogram for the new support without
actually measuring on that support (Zhang et
al. 1990).

Discussion

One suggested solution to the problem of
smoothing discussed in the previous section in-
volves regularizing the punctual variogram to
estimate the dispersion variance D*(v,)) for the
larger supports (Atkinson and Kelly 1997). The
idea is that by subtracting D*(v,}”) for the kriged
data (0%,) from that for the original point data
(0?,) the variance lost due to smoothing (unde-
sirable) and regularization (desirable) (02 can
be estimated by subtraction. The variance lost
through regularization (¢2;) can be estimated
from the regularized variogram (e.g., Fig. 11)
using a discrete approximation of the within-
block variance term on the right side of Equa-
tion (10) ( Journel and Huijgregts 1978). Then,
the variance lost due to smoothing (0?,) can be
estimated by subtraction (Atkinson and Kelly
1997). Given the reduction in variance in the tar-
get or explanatory variable, one can suggest an
adjustment to the slope of the regression 4 using:

_ ssp,

55 (13)

where SSP,, is the sum of the squares of the
products between x and y (representing the co-
variance between x and y) and SS, is the sum of
the squares of x (representing the variance of x)
(Webster and Oliver 1990). For example, the
slope of the regression could be adjusted by the
square root of the scalar change to the variance
in the kriged variable since, for a constant cor-
relation between x and y, the covariance term
may be expected to vary as the square root of
the variance in one variable. However, the ma-
jor obstacle that remains is that the covariance
term SSP,, between x and y is not known for the
original data. The covariance (with the second
variable) can vary between the original and
kriged data in unpredictable ways, depending
on the scale (component) of spatial variation
that is emphasized by kriging. Conditional
simulation or stochastic imaging has been sug-
gested as a potential solution to re-scaling (e.g.,
Journel 1996), but unfortunately it does not
solve the covariance problem.

Re-scaling of data is a fundamental objective
in operational GIS (e.g., co-registration of data
layers). Therefore, the re-scaling issue repre-
sents a serious, but often overlooked problem
for GIS users.

Conclusions

Scale is an issue of concern to geographers and
environmental scientists with a broad range of
subject interests. Researchers are frequently
concerned with selecting a scale (or increas-
ingly a range of scales) of measurement which
will provide informative and accurate spatial
variation. Further, they are increasingly re-
quired to change the scale of measurement of
one variable to facilitate comparison with an-
other, and the latter objective has been most
prominent in remote sensing and GIS. There
are no straightforward solutions to these prob-
lems; worse, there are many pitfalls. For exam-
ple, when re-scaling to a larger support, if it is
not possible to average the spatial variation
within the larger support, some form of interpo-
lation may be used to “scale-up” the sampling
frame. However, with interpolation generally
comes smoothing, and this is likely to alter the
subsequent relations with other variables.

We suggest that an important first step in ad-
dressing scale-related issues is to adopt a con-
ceptual framework in which the spatial varia-



tion observed in data is a function of both the
scales of the underlying variation (or more gen-
erally, phenomenon) and the scales of measure-
ment (Fig. 1). Itis important to gain knowledge
of the structure of the property, for example, by
computing the sample variogram (or other
structure function such as the covariance func-
tion). The sample variogram describes the scales
of spatial variation observed in sample data.
Further, given the modelled sample variogram,
the geostatistical operation of regularization
(Equation 10) can be used to predict changes in
the variable with changes in the scales of mea-
surement. This amounts to scaling the RF
model rather than the data.

The variogram is of fundamental impor-
tance when making decisions about scales of
measurement (e.g., which spatial resolution to
adopt) and about changing the scales of mea-
surement of data already acquired. Since Equa-
tion (10) is generally applicable, it is of funda-
mental importance to geography. l
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