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Data and Models

Ludwig Eduard Boltzmann (1844–1906) was one of the most famous  scientists 
of his time and he made incredible contributions in theoretical physics. He 
received his doctorate in 1866; most of his work was done in Austria, but he 
spent some years in Germany. He became full professor of mathematical physics 
at the University of Graz, Austria, at the age of 25. His mathematical expression 
for entropy was of fundamental importance throughout many areas of science. 
The negative of Boltzmann’s entropy is a measure of “information” derived over 
half a century later by Kullback and Leibler. J. Bronowski wrote that Boltzmann 
was “an irascible, extraordinary man, an early follower of Darwin, quarrelsome 
and delightful, and everything that a human should be.” Several books chronicle 
the life of this great science figure, including Cohen and Thirring (1973) and 
Broda (1983) and his collected technical papers appear in Hasenöhrl (1909).

2.1 Data

Data should be taken from an appropriate probabilistic sampling protocol or 
from a valid experimental design, which also involves a probabilistic compo-
nent. These are important steps leading to a degree of scientific rigor. Such 
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data often arise from probabilistic sampling of some kind and are said to be 
“representative.” Outside of this desirable framework lie populations where 
such ideal sampling is largely unfeasible. For example, human populations 
are often composed of members that are heterogeneous to sampling. Thus, by 
definition, it is impossible to draw a random sample and such heterogeneity 
can lead to negative biases in estimators of population size. Estimators that are 
robust to such heterogeneity have been developed and these approaches have 
proven to be useful, but the standard error is often large. In general, care must 
be exercised to either achieve reasonably representative samples or derive 
models and estimators that can provide useful inferences from (the sometimes 
unavoidable) nonrandom sampling.

Unfortunately, it has been common in some subdisciplines to take data via 
what has been called “convenience sampling,” that is, data are taken from 
roads or sidewalks or in other “convenient” ways (e.g., near a parking lot or 
under the shade of a tree). I believe these approaches violate accepted science 
practice; certainly there is not a valid basis for an inductive inference. All that 
might be validly said is something about only the sample itself. For example, 
a conclusion might be “I counted the number of birds I saw along 12 roads in 
western Ohio and 10% were raptors. Here, nothing can be said about birds 
in western Ohio in general or about the percent of the birds that were raptors 
as an inductive inference to some well-defined population. This situation 
is little different then a child who reports, “I saw some squirrels” – this sort 
of activity never seems to lead to a new theory or an important discovery. We 
know a great deal about proper data collection. There are dozens of books 
on sampling protocols and experimental designs. There is little excuse for 
 getting this issue seriously wrong.

Another common error is the use of the so-called index values as the 
response variable. Under this approach, the response variable of interest is 
not recorded, rather it is replaced by a crude index value. Such index  values 
are usually a raw count or some sort of averaging of such counts. These num-
bers are recorded and “analyzed.” Much has been written about the use of 
index values and I think the evidence is conclusive that they represent an 
amateur, unthinking approach and is not scientific. The word “data” has the 
 connotation that there is recoverable information in the data; index values are 
not data, they are just numbers. None of the procedures in this primer claim to 
make sense out of nonsense. If the data have not been taken with care, using 
proper procedures, then the so-called findings will likely be only an assort-
ment of uncertainty and disinformation. DeLury (1947), a famous fisheries 
biologist, asked, “Is an untrustworthy estimate better than none?” Meaningful 
data of sufficient quantity are the grist of scientific bread.

There are two conceptual aspects. First, is the study sound so that an induc-
tive inference can be justified? Second, are the data analysis methods sound? 
The first is not a data analysis issue, rather this question asks if the science of 
the matter is reasonably well in place and if the data have been collected in a 
reasonable manner. The second relies on adequate modeling and on objective 



approaches to model selection (Chap. 3). We must try to guard against rushing 
too quickly to data analysis, when the subject matter science is still underde-
veloped or if the data are seriously compromised. The science question should 
be carefully thought out and plausible hypotheses derived. These matters rep-
resent hard work and must typically take thought over a period of many weeks 
or months. The success, in the end, will rest on these science issues being 
well done – we must not think the analysis will somehow make up for serious 
inadequacies during these initial steps. These issues will never live up to the 
ideal; thus, the concept of evolving sets of hypotheses often prove very useful 
and lead to an effective strategy for fast learning.

In serious work, data are carefully collected during a pilot study. The pilot 
study allows investigators the chance to work out the bugs in field or labora-
tory application and attempt some degree of optimization of the sampling 
protocol or experimental design to be used. Required sample sizes are esti-
mated, stratification is considered, etc. Engineers routinely conduct feasibil-
ity studies before they begin a project and life scientists should take a similar 
approach before the actual data collection begins. If resources are found to be 
inadequate for the task, it is often better to wait until the needed resources are 
assembled before beginning the project. Such waiting allows time for addi-
tional planning and refinement while gathering the resources needed.

If data are collected in an appropriate manner, then there is information in 
the sample data about the process or system under study. In simple cases with 
continuous data, some of this information can be retrieved and understood using 
graphs (e.g., X vs. Y), plots, histograms, or elementary descriptive statistics (e.g., 
estimated means and standard deviations). However, in nearly all interesting 
cases, a mathematical model is required to retrieve the information in the data 
and allow some understanding of the system. Scientists often want to make a 
formal inductive inference; that is, the process of going from the sample data to 
an inference about the population from which the sample was drawn. Deductive 
statements can usually be classed as either valid or invalid. However, inductive 
statements (inferences) are not made with certainty and inferential statements 
can range from very weak to very strong. Inductive inference concerns weighing 
evidence and judging likelihood, not proof itself. Statistical science has allowed 
the inductive process more rigor and the ability to address a deeper level of com-
plexity. Nearly all questions in life sciences seem to be inductive.

Valid inductive inference is another example of rigor in science but it rests on 

has had a long history in the sciences. The inference comes from a model that 
approximates the system or process of interest. In some sense we can think of 
a properly selected model as the inference (at least for inferences made from a 
single model).

Investigators should continue to think and rethink the collection of working 
hypotheses as the data are collected. This is a place to delete a hypothesis in 
the set because of field evidence or because it seems unfeasible to measure 
variables that are central to a particular hypothesis. This is a time to add new 
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certain important requirements. This leads to “model based inference” and this 
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hypotheses or refine existing hypotheses. At any given time, our knowledge is 
based on hypotheses that have shown their competitive fitness by surviving to 
this point; a “survival of the fittest” as hypotheses struggle for continued exist-
ence. There is a competitive struggle that eliminates hypotheses that are unfit 
(found to be implausible, based on one or more data sets). For example, per-
haps elevation is not important to a response variable, as first thought, rather it 
is actually temperature (which is negatively correlated with elevation). Should 
some interaction terms be considered due to observations in the laboratory? 
Does it seem that two variables might be very negatively correlated, suggest-
ing care will be needed to understand this? The focus should remain on the 
candidate set of science hypotheses; ideally, these should be fixed once the 
analysis begins. Following these activities, some tentative hypotheses might 
be added post hoc, but such results must be treated more carefully.

Some common sense and art are involved in the concept of an evolving set 
of hypotheses. Sometimes it might be premature to delete some hypotheses if 
the data set is small; in such cases perhaps judgment should be reserved until 
another data set is available. In analyzing data from small samples, one must 
guard against dismissing some larger models with more structure because a 
new and larger data set might be able to support the additional structure. Such 
judgments can be guided by methods given in Chap. 4.

2.1.1 Hardening of Portland Cement Data

Our first example will be the data on four explanatory variables thought to be 
related to cement hardening. The meager (n = 13) data are shown in Table 2.1.

TABLE 2.1. Cement hardening data from Woods et al. (1932). Four variables (in 
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 7 26 6 60 78.5
 1 29 15 52 74.3
 11 56 8 20 104.3
 11 31 8 47 87.6
 7 52 6 33 95.9
 11 55 9 22 109.2
 3 71 17 6 102.7
 1 31 22 44 72.5
 2 54 18 22 93.1
 21 47 4 26 115.9
 1 40 23 34 83.8
 11 66 9 12 113.3
 10 68 8 12 109.4



In this case, the sample size is 13 and this must be considered to be gener-
ally inadequate. One is taught in STAT101 that a sample of 25–30 is often 
required just to estimate a simple mean from a sample of a population that 
is approximately normally distributed. Kutner et al. (2004) recommend 7–10 
observations for each predictor variable. Thus, we have to be realistic when 
our interest lies in the estimation of more complicated parameters such as 
finite rates of population change (λ

i
), or an enzyme inhibition rate (f), or some 

hazard rate (h
(t)

). The cement hardening process is likely to be somewhat 
deterministic with a fairly weak stochastic component. Thus, even with the 
small sample available, perhaps some interesting insights can be found in this 
example. Note that both the response variable and the predictor variables are 
continuous; the response variable is unbounded while the predictor variables 
are percentages and bounded between 0 and 100.

The basis for a valid inductive inference in this example rests on the various 
chemical compounds being reasonably uniform. That is, dicalcium silicate 
(2CaO·SiO

2
) is the “same” from place to place. Thus, random samples would 

produce little variation in this variable or, for that matter, the other three vari-
ables. This is an important step or generalized inference from these data will 
be compromised.

Large sample size conveys many important, but sometimes subtle, advan-
tages in the statistical sciences. Large sample size carries more information 
and such information is a major focus of this primer. Investigators should 
make every attempt to garner the resources to allow an adequate sample size to be 
realized. There is a large literature on the establishment of sample size, given 
either some background data from a small pilot survey or outright considered 
guesses about the system to be studied (see Eng 2004). Monte Carlo simula-
tion studies provide another means to predict the sample size for a particular 
application (see Muthen and Muthen 2002).

2.1.2 Bovine TB Transmission in Ferrets

The second example is the data on disease transmission in ferrets in New 
Zealand (Table 2.2). While the sample size here is moderate (n = 319), 
estimates of the per year force of infection (λ̂  ) varies by a factor of 88; thus 
it seems realistic that the data might be adequate to reveal some interesting 
insights. High variances seem to be the rule in many areas of life sciences, 
making data analysis challenging and making inferences somewhat tentative 
in many cases because of the uncertainty. Increased sample size can often help 
combat these issues.

These data consist of counts and are therefore of a substantially different 
type than the data in the earlier example. Ferrets were caught in baited traps 
systematically placed in selected areas (based on prior information from wild-
life surveys or from tuberculin testing of cattle herds). Traps were checked 
daily over a 5–10-day sampling period. We might ask if the data came from 
a strict probabilistic sampling frame – no, probably not. Animals willingly 

2.1 Data  23



24  2. Data and Models

or unwillingly get trapped and there is surely heterogeneity in individual 
 trapability. Are the sample data “representative” to allow a valid inductive 
inference to the population of interest? I suspect so; however, the authors 
should ideally make this argument.

2.1.3 What Constitutes a “Data Set”?

There is sometimes confusion as to what represents a “data set” in the litera-
ture (e.g., Stephens et al. 2005). There are few restrictions on a data set as long 
as its components have information on the same issue of interest.

Questions concerning the extent of a data set can often be answered by 
examination of the response variable. In a treatment-control experimental 
 setting, the response variable might be a concentration level of a compound 
in a blood sample; thus, one data set because both data sets have information 
on the same issue of interest. However, if different response variables are 
used (different issues of interest) across some categories, then these constitute 
 different data sets.

I will provide some examples that might help people understand this matter. 
Consider a simple treatment and control study; one might think there are two 
“data sets” here, one for the control and another for treatment. Not so – this 
is to be treated as a single data set. Consider a discriminant function analysis 
with seven discriminator variables with the analysis being to find out which 
subset of the seven might serve in a parsimonious model for inference about 
the discrimination. Here the “data set” consists of the binary response variable 
and the seven discriminator variables. Of course, given several models in the 
set, only one (at most, assuming a global model) will have all seven variables 

TABLE 2.2. The data on infection and the estimated force of infection (l̂ ) of Mycobacte-
rium bovis infection using modified exponential models (from Caley and Hone (2002).

Site Gender No. examined No. infected l̂ / year

Lake Ohau M 57 3 0.19
 F 54 2 0.09
 Total 111 5 0.14
Scargill Valley M 37 5 1.40
 F 39 8 0.65
 Total 76 13 1.02
Cape Palliser M 15 11 2.69
 F 23 10 1.24
 Total 38 21 1.97
Castlepoint M 27 21 7.90
 F 21 10 3.65
 Total 48 31 5.77
Awatere Valley M 24 16 4.64
 F 22 12 2.15
 Total 46 28 3.40



in it. Other models will have fewer than seven variables, but this does not 
invalidate the notion of the “data set” (see Lukacs et al. 2007).

2.2 Models

Quantification is nearly essential in the empirical sciences where stochastic-
ity is substantial, there are several different sources of variability (factors), or 
there is some degree of complexity. This complexity might arise from multiple 
variables, interactions between and among variables, high variability, nonlin-
earities (e.g., threshold effects, asymptotes), and a host of other issues. Unless 
one is engaged in simple descriptive studies, they must deal with mathemati-

We should not think of this requirement as negative; instead, quantification 
allows both rigor and the ability to better understand far deeper science issues. 
Soule (1987:179) offered, “Models are tools for thinkers, not crutches for the 
thoughtless.” Box (1978:436) records that R. A. Fisher felt some statisticians 
were trained strictly mathematically and that many of them seem to have no 
experience of the valuable process known as “stopping to think.”

We are not trying to model the data; instead, we are trying to model the 
information in the data. The goal is to recover the information that applies more 
generally to the process, not just to the particular data set. If we were merely try-
ing to model the data well, we could fit high order Fourier series terms or poly-
nomial terms until the fit is perfect. Data contain both information and noise; 
fitting the data perfectly would include modeling the noise and this is counter 
to our science objective. Overfitting is a poor strategy and it goes against the 
notion of parsimony, a subject to be addressed shortly.  Models are central to 
science as they allow a rigorous treatment and integration of:

● Science hypotheses (the all important set {H
i
})

● Data (e.g., continuous or discrete or categorical),
● Statistical assumptions (e.g., Weibull errors, linearity)
● Estimates of unknown model parameters (q) and their covariance matrix Σ

Models are only approximations to full reality. Box (1979) said “… all mod-
els are wrong, some are useful.” We should think of the value of alternative 
models as better or worse, instead of right or wrong. While a driver’s license 
is “valid” or not, models do not share this property. The strength of evidence 
for competing models is very much central to both science and this textbook.

Models must be derived to carefully represent each of the science hypoth-
eses. These models are always to be probability distributions. The idea is that 
each hypothesis has a model that fully represents it; then we can think of 
hypothesis i and model i as almost synonyms. That is, the goal is to have a 
one-to-one mapping between the ith hypothesis and the ith model:

H g H g H g1 1 2 2 R R⇔ ⇔ ⇔, ,..., .

2.2 Models  25

cal models. Such is certainly the case I focus on here – model based inference. 
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People in the life sciences are often poorly trained in modeling techniques; 
this might be a place where the investigator will want to seek advice or 
 collaboration with a person in the statistical sciences.

Then the science question asks, “What is the support or empirical evidence 
for the ith hypothesis (via its corresponding model), relative to others in the set.
This leads us to the “model selection” problem. So, finally the issue becomes 
the evidence for each of the hypotheses (and their associated models), given
the data. Of course, hypotheses and their corresponding models not in the set 
are out of consideration until, perhaps, they are added at a latter time as the 
set evolves. So, now we can ask if hypothesis C is 10 times as likely as hypoth-
esis A? Is the support for hypotheses A and B nearly equal? Is hypothesis A 
655 times more likely than hypothesis D? If so, would we take this as very 
strong evidence? These are the types of science issues that can be answered 

Often inferences are based on the best hypothesis in the set. While “best” 
is not defined until Chap. 3, standard analysis often tries to determine or 
 estimate which of the hypothesis is the best, based on the data. Inference is 

inference. Assuming models have been derived to represent the hypotheses 
in the set, this is the so-called model selection problem. A “good” model is 
able to properly separate information in the data from “noise” or noninfor-
mation. Finding such a model is a generic goal of model selection. Now I 
begin to use the concept that a science hypothesis and its model are (ideally) 
 synonymous.

Many standard approaches to model selection have been developed, 
including adjusted R2; Mallows’ C

p
; step-up, step-back, and stepwise regres-

sion, to name a few. As one might expect, the early approaches are rarely 
the best ones; what is not expected is that the early methods are still being 
taught in mainstream statistics classes (at least for nonstatistics majors) 
and readily available in the most well-known statistical computing pack-
ages. Most selection approaches (e.g., stepwise regression) are based on 
some sort of theory but they are often not based on any underlying theory 
concerning what is a good fitted model, given the data; hence, no rigorous 
criterion of “best” model. The methods do not have a proper underlying 
theory, just a semblance of semirelevant theory. The model (or hypothesis) 
selection issue is central to data analysis: “Which hypothesis/model should 
I use for the analysis of a particular data set?” and “How can this be best 
done?”

Approaches are needed to provide quantitative evidence for the hypotheses 
in the set. As information can be quantified in various ways, approaches have 
been recently developed to address the model selection problem as well as an 
empirical ranking of the hypotheses in the set, through the associated models. 
Here it starts to become clear that the modeling step is nearly as important as 
the hypothesizing step in empirical science.

easily using the existing theory for model based inference.

then based on this hypothesis, via its corresponding model – model based 



2.2.1 True Models (An Oxymoron)

Models are never “true”; models do not reflect reality in its entirety. In the real 
world with real data, there is no valid concept of a model that is exactly true, rep-
resenting full reality. Models are approximations by definition if nothing else. If 
we had a true model, we would still have to estimate its many parameters and 
try to interpret the complex result. Any such true model would be quite com-
plicated and involve a great many parameters. Thus, an extraordinarily large 
sample size would be required, unless it is also assumed that the true model 
somehow came with its true parameters known to the investigator! I find it hard 
to imagine a situation where the researcher knew the exact  functional form of 
the true model and all of its parameter values! Some scientists might take the 
view that any such “true” model must be considered infinite dimensioned; per-
haps, this is a useful concept but it is just another way of saying there is no valid 
notion of a true model. Recently I have seen the term “inexact models” used; I 
believe all models are approximations and, therefore, “inexact.”

Computer simulation studies often use Monte Carlo methods to simulate 
“pseudodata” from a mathematical model, with parameters known or given. 
Here the exact form of the model and its parameters are known – this is prop-
erly termed a generating model. In this computer sense, the “true model” and 
its parameters are known. A common mistake in the statistical literature has 
been to provide many replicate pseudodata sets from a generating model, 
include this model in the set, and then proceed to ask questions about which 
model selection method most often selects the generating model. Such circular
results are of little use in the real world where data arise from complex (and 
only partially observable) reality, not from a simple parametric model. Real 
data do not come from models and selection criteria that are designed to select 
a so-called true model are misguided.

Going further, there is the notion of “consistency” in model selection. Here, 
some procedures are classed as being “consistent,” meaning that as sample 
size increases (often by three to five orders of magnitude) the probability of 
selecting the “true” model approaches 1, given the true model is in the set (see 
Appendix D). This concept seems strained if either the true model is not in 
the set or if the “true” model is infinite dimensional. In reality, the model set 
changes as sample size is increased by orders of magnitude and this makes the 
notion of consistency strained.

The concept of truth and the false concept of a true model are deep and 
surprisingly important. Often, in the literature, one sees the words correct
model or simply the model as if to be vague as to the exact meaning intended. 
Bayesians seem to say little about the subject, even as to the exact meaning 
of the prior probabilities on models. Consider the simple model of population 
size (n) at time t

n n st t t+ = ⋅1 , ,
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where s
t
 is the survival probability during the interval from t to t + 1. This is 

a “correct” model in the sense that it is algebraically and deterministically 
 correct; however, it is not an exact representation or model of truth. This 
model is not explanatory; it is definitional (it is a tautology as it implies that 
s

t
 = n

t+1
/n

t
). For example, from the theory of natural selection, the survival 

probability differs among the n animals. Perhaps the model above could be 
improved if average population survival probability was a random variable 
from a beta distribution; still this is far from modeling full reality or truth, 
even in this very simple setting. Individual variation in survival could be 
caused by biotic and abiotic variables in the environment. Thus, a more exact 
model of full reality would have, at the very least, the survival of each indi-
vidual as a nonlinear function of a large number of environmental variables 
and their interaction terms. Even in this simple case, it is surely clear that one 
cannot expect any mathematical model to represent full reality – there are no 
true models in life sciences. We will take a set of approximating models g

i
,

without pretending that one represents full reality and is therefore “true.”
Approximating models share some features with maps. Maps fail to cap-

ture every detail on the landscape, regardless of their scale. Both data and 
maps contain errors of omission; this seems unavoidable. Errors of commis-
sion should, in principle, be avoided. A map should not show a road or stream 
that does not exist, while we should not find an effect in the data that does not 
exist (a spurious effect). All maps are wrong, but some are useful, at least in 
certain contexts. A map of Switzerland is of limited use in the United States, 
but might be very useful in Switzerland. Of course, there is no true map.

2.2.2 The Concept of Model Parameters

In many cases, parameters are real entities. For example, the size of a popula-
tion of parrots in an aviary can be determined by a census at a given point in 
time and this count is a parameter (N, the population size). If we have a time 
series of censuses of this population, the parameters are N

t
, where t is time. 

However, parameters are often human constructs and are important in under-
standing systems or processes. The probability of death in a fish population in 
a large lake is unobservable and not really a parameter in some sense. Instead, 
we, as investigators, define an arbitrary time interval (such as a month or a 
year) and derive models that include the probability of death as a parameter, 
and proceed to estimate this. It is a model parameter, but is it a parameter inti-
mately associated with the population of fish? Perhaps not? Linear regression 
models are merely first-order approximations to often complex processes of 
interest. Any particular b (regression “slope”) is unlikely to be a parameter 
associated with the process itself. Similarly, l, the finite rate of population 
change, is hardly a parameter that can be directly observed or measured, but it 
serves as a very useful construct in population ecology. Scientific understand-
ing can often be aided by the notion of parameters, whether real or just useful 
or directly observed or unobservable.



In fact, thinking that truth is parameterized is itself a type of (artificial) 

when used to represent reality or concepts or hypotheses. Mathematics is a 
human construct and does not exist in the same sense as reality. Sometimes 
it is useful to think of f as full reality and let it have (conceptually) an infinite 
number of parameters. This “crutch” of infinite dimensionality at least keeps 
the concept of reality even though it is in some unattainable perspective. Thus, 
f(x) represents full truth, and might be conceptually based on a very large 
number of parameters (of a type we have not even properly conceived) that 
gives rise to a set of data x.

Akaike noted that the success of the analysis of real data depends essen-
tially on the choice of the basic model. Successful use of statistical methods 
depends on the integration of subject-matter science into the statistical for-
mulation. This demands a significant amount of effort for each new problem. 
This is where the science of the issue enters consideration: a major step.

2.2.3 Parameter Estimation

It is a fitted model that is the basis for statistical inference; hence, parameter 
estimation is very important. If the sample size is small, the parameter esti-
mates will typically have large variances and wide confidence intervals and 
might be so uncertain as to be of little use. Large sample size conveys many 
important advantages in terms of parameter estimates and model selection.

Given a model and relevant data, procedures were developed nearly a 
century ago to estimate model parameters. Three common approaches have 
emerged for general parameter estimation: least squares, LS (or “regres-
sion”), maximum likelihood, ML, and Bayesian methods. Least squares has 
been popular; however, its domain is primarily the class of the so-called gen-
eral linear models (e.g., regression and ANOVA). I will say little about this 
approach. The much more general approach is Fisher’s maximum likelihood 
(see Appendix A). The notion of ML is compelling – given a model and data, 
taking as the estimate the value of the parameter that is “most likely.” Hence 
the name maximum likelihood estimate (MLE); it is the value of the param-
eter that is most likely, given the data and model.

As sample size increases (asymptotically), MLEs enjoy several proper-
ties (within certain regularity conditions): unbiased, minimum variance, 
and normally distributed. In addition, if one takes an MLE and transforms 
it to another estimate, it too is an MLE (the “invariance” property). These 
are important properties and explain partially why likelihood is so central to 
 statistical thinking.

An important component of data analysis relates to the fit of a model to 
the data. These activities focus primarily on a global model and include such 
things as a formal goodness-of-fit test, adjusted R2 value, residual analyses, 
and checking for overdispersion in count data. If the global model is judged to 
be “poor,” then further data analysis will likely be compromised.
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model based conceptualization. Going deeper, mathematics itself is a “model” 
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A person new to statistical thinking often finds it difficult to relate data, 
model, and model parameters that must be estimated. These are hard concepts 
to understand and the concepts are wound into the issue of parsimony. Let the 
data be fixed and then realize the information in the data is also fixed, then 
some of this information is “expended” each time a parameter is estimated. 
Thus, the data will only “support” a certain number of estimates, as this limit 
is exceeded parameter estimates become either very uncertain (e.g., large 
standard errors) or reach the point where they are not estimable.

2.2.4 Principle of Parsimony

A model has structural and residual components. Parsimony relates to under-
and overfitting models. Examination of the graph in Fig. 2.1 shows that an 
underfitted model (the left side of Fig. 2.1) risks not only high bias, but also 
the illusion of high precision (“a highly precise wrong answer”). Underfitting 
relates to the case where some model structure is erroneously included in the 
residuals. Of course the investigator does not necessarily know the situation 
she is in. Overfitted models are also to be avoided because further examina-
tion of the graph suggests that overfitting (the right side of Fig. 2.1) risks 
including too many parameters (that need to be estimated) and a high level 
of uncertainty. Overfitting relates to the case where some residual variation 
is included as if it were structural. This may seem like the lesser of two evils; 

FIG. 2.1. The Principle of Parsimony is illustrated here as a function of the number of esti-
mable parameters (K) in a model. There are two processes here: first, bias (or squared bias) 
declines as K increases and, second, the variance (uncertainty) increases as K increases. 
These concepts suggest a trade-off whereby the effects of underfitting and overfitting are 
well balanced.
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however, precision is lessened, often substantially. Overfitting implies that 
some noise (noninformation) has been included in the structural part of the 
model and the effects are not part of the actual process under study (i.e., 
spurious). Edwards (2001:129) says it in an interesting way,

“…too few parameters and the model will be so unrealistic as to make 
prediction unreliable, but too many parameters and the model will be so 
specific to the particular data set so to make prediction unreliable.”

Clearly, one wants a proper trade-off between squared bias vs. variance or, 
said another way, between under- and overfitting. Either extreme will result in 
unreliable prediction. Residuals might be pure noise or information that can-
not be decoded yet. The concepts of under- and overfitting depend on sample 
size; as sample size increases, additional information is available in the data, 
and smaller effects can be identified. Thus, residual variation can be under-
stood and this transfers to the structural part of the model. Parsimony cannot 
be judged against any notion of a true model.

The concept of parsimony in modeling and estimation has been an impor-
tant statistical principle for several decades. The general notion of parsimony 
has a much longer history in science and engineering and is closely related to 
Occam’s razor. Parsimony is a fundamental issue in science and it is easy to 
overlook its depth and importance. Occam’s statement has a literal translation 
from Latin, but is commonly referred to as “Occam’s razor” meaning roughly 
to “shave away all that is not needed.”

Parsimony appears to be a simple notion; however, it is easy to underrate 
its importance and its centrality in modeling, model selection, and statisti-
cal inference. Parsimony can be viewed as a trade-off between squared bias 
and variance (variance is a squared quantity, thus bias is squared for some 
comparability). Think of parsimony as a function of the number of estimable 
parameters in a model (denote this parameter count K). Given a fixed data 
set, two things happen as the number of model parameters to be estimated are 
increased (the standard example is a polynomial where additional parameters 
are introduced from a linear, to a quadratic, to a cubic, etc.). First, squared bias 
decreases as more parameters are added – this is good. Second, uncertainty 
(measured by the variance) increases as more parameters are added – this is 
not so good (Fig. 2.1).

The addition of more parameters reduces bias but, in doing so, increases the 
uncertainty. That is, for a given data set and its context, there is a “penalty” 
or “cost” for adding more parameters that must be estimated. It is the need 
to estimate parameters from the data that is the difficulty. If one could some-
how add parameters with known values, the situation would be simple: that 
is, consider only models with a large number of parameters. Unfortunately, 
parameters in these models are not known; reality is harsh in this regard and 
parameters must be estimated based on the information in the data. Each time 
a parameter is estimated, some information is “taken out” of the data, leaving 
less information available for the estimation of still more parameters.
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Parsimony exists near the small region where the lines cross – a trade-off 
(Fig. 2.1). Parsimony is a conceptual goal because neither bias nor variance 
is known to the investigator analyzing real data. There are many specific 
approaches to achieving parsimony but the important concept does not, by 
itself, lead to a specific criterion or recipe. Parsimony is a property of models 
(and their parameters that must be estimated) and the data.

There is a large literature admonishing investigators to avoid overfitting 
as this leads to spurious effects and imprecision. An equally large literature 
warns of underfitting because of bias and effects that are present, but missed 
during data analysis. Until somewhat recently, statistical science lacked an 
effective way to objectively judge the trade-off – how many are too many, 
how many are not enough. This has been largely resolved for a wide class 
of problems and is another example of the advantage (actually necessity) of 
quantification. Rigor in empirical science has a basis in quantification. All 
methods for model selection are linked in some manner with the principle 
of parsimony.

I have had biologists state that “A biologically reasonable model is ‘pun-
ished’ because it has too many unknown parameters.” Indeed, the estimation 
of parameters sucks information from the data to the point that little or no 
information is left for the estimation of still more parameters. It is easy, at 
first, to think that parameters come somehow “free” and that complex bio-
logical models can be developed with little or no data. Instead, the reality of 
the situation is that parameter uncertainty must harken back to the concept of 
parsimony. A partial solution to obtaining increased biological reality is to 
obtain a large sample size or improve study design (e.g., control some factors) 
as these allow parameter estimates with good precision and functional model 
forms to be evaluated.

In model selection, we are really asking which is the best model for a given 
sample size. Given a real process that has some realistic degree of complexity 
and high dimensionality, a high-dimensioned model might be selected as best 
if the sample was quite large. In the same situation, a small, low-dimensioned
model might be expected if the sample was small. A very rough rule of thumb 
advises that at most n/10 parameters can be estimated; thus for observations 
on a sample of 30 individuals, one might be able to estimate about three 
parameters (e.g., b

0
, b

1
, and s2) in a regression model. This is often less than 

what biologists attempt with such small data sets.
Model selection resulting from the analysis of sparse data usually sug-

gest a simple model with few parameters. Such results should not be taken to 
suggest that the system under study is necessarily simple. On the contrary, 
if a virtually “null” model is selected, this usually points to an insufficient 
amount of data to fit anything more realistic. Even then, if the best model 
is, for example, one with no time effects, one should not infer the process is 
time invariant. Instead, the correct interpretation is that the variation in some 
parameter across time is small and such variation could not be identified with 
the small amount of information in the data.



We are really asking – how much model structure will the data support? 
A good fit is not sufficient, we need predictive ability, and this involves 
 parsimony – how many parameters can be estimated and included in a model? 
Overfitting risks (by the addition of extra parameters) the inclusion of some 
of the random “noise” as if it were structure. Model selection criteria allow 
an objective measure of how many parameters can be fitted to a model, given 
the sample size. We can chase truth, but we will never catch it and parsimony 
is central to the chase.

2.2.5 Tapering Effect Sizes

In perhaps all of the empirical sciences, there are a wide range of “effect 
sizes.” There are the large, dominant effects that can often be picked up even 
with fairly small sample sizes and fairly poor analytical approaches (e.g., 
stepwise regression). Then there are the moderate-sized effects that are often 
unveiled with decent sample sizes and more adequate analysis methods. It is 
more challenging to identify the still smaller effects: second- and third-order 
interactions and slight nonlinearities. Increasingly large samples are needed 
to reliably detect these smaller effects. Beyond these small effects lie a huge 
number of even smaller effects or perhaps important effects that stem from 
rare events. This situation is common as any field biologist can attest. We say 
there are “tapering effect sizes” and we can chase these with larger sample 
sizes, better study design, and better models based on better hypotheses. The 
notion of tapering effect sizes is everywhere in the real world and it is hard to 
properly emphasize their importance.

Tapering effect sizes are what preclude the notion of a true model. Just the 
high-order interactions are quite complex. Consider the ramifications of the 
various systems in the human body as body temperature climbs to 105° or as 
one finishes a marathon run. The life sciences are all about a wide variety of 
tapering effect sizes.

2.3 Case Studies

2.3.1 Models of Hardening of Portland Cement Data

This is a well-known data set and authors typically approach the issue as a 
multiple linear regression problem with four predictor variables. The global 
model is

E y x x x x( ) ( ) ( ) ( ) ( ),= + + + +b b b b b0 1 1 2 2 3 3 4 4

where y is the calories of heat evolved per gram of cement after 180 days, x
1

the percent calcium aluminate (3CaO .Al
2
O

3
), x

2
 the percent tricalcium silicate 

(3CaO.SiO
2
), x

3
 the percent tetracalcium alumino ferrite (4CaO .Al

2
O

3
.Fe

2
O

3
),
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x
4
 the percent dicalcium silicate (2CaO.SiO

2
), and E(.) is the expectation 

operator (see Appendix B).
This example problem has two objectives: variable selection and prediction. 
The analysis could be done in a least squares (LS) or maximum likelihood 
(ML) framework (Appendix A). The LS and ML estimates of the b

i
 para-

meters will be identical; the two estimates of s 2 will differ slightly. This might 
be a place for the reader to review quantities such as the residual variance 
s 2, residual sum of squares RSS, adjusted R2, the covariance matrix Σ., vari-
ous residual analyses, and the notion of a global model.

Because only four variables are available, the temptation is to consider all 
possible models (24−1 = 15) involving at least one of the regressor  variables. 
Burnham and Anderson (2002), strictly as an exploratory example, consid-
ered the full set of models, including the global model {1234} with K = 6 
parameters (i.e., b

0
, b

1
, b

2
, b

3
, b

4
, and s 2). They generally advise against 

consideration of all possible models (15 in this example) of the x
i
 (note that 

even more models would be needed if interactions, powers of the predictor 
variables, or other nonlinear relationships were employed).

In contrast, for this example, I will try to limit the set to those that seem 
plausible, particularly in view of the small sample size. Using all possible 
models usually represents an unthinking, naive approach. I have already noted 
that the global model is essentially singular as the numerical values for the 
four variables sum to approximately 1 (rounding prevents some sums to be 
exactly 1). Thus, the global model can be dismissed in the example. I already 
eliminated the four single variable models as cement is a mixture of ingredi-
ents. So, now the set is down to 10 models.

Additional thinking (Sect. 1.8) about the chemical similarity of the pair of 
variables 1 and 3 and the pair 2 and 4 was relevant. Without the curse of data 
dredging, it is advisable to examine the correlations between these pairs, based 
on the data available. Such correlation analysis substantiates the observation; 
the correlation coefficient between x

1
 and x

3
 was −0.824 and the correlation 

between x
2
 and x

4
 was −0.973). Thus, including both variables within a pair 

would not be advisable, particularly in view of the fact that the sample size is 
only 13 observations. However, we do not know if x

1
 or x

3
 is the better predic-

tor, nor do we know if x
2
 or x

4
 is the better predictor. Thus, the following five 

hypotheses and variables lead to five models making up the candidate set:

H
1
 0 variables g

1
E(y) = b

0
H

2
x

1
 and x

2
g

2
E(y) = b

0
 + b

1
(x

1
) + b

2
(x

2
)

H
3

x
1
 and x

2
 and x

1
*x

2
g

3
E(y) = b

0
 + b

1
(x

1
) + b

2
(x

2
) + b

3
(x

1*x
2
)

H
4

x
3
 and x

4
g

4
E(y) = b

0
 + b

1
(x

3
) + b

2
(x

4
)

H
5

x
3
 and x

4
 and x

3*x
4

g
5

E(y) = b
0
 + b

1
(x

3
) + b

2
(x

4
) + b

3
(x

3*x
4
)

Hypothesis H
1
 has no predictor variables and is not in the original 15 pos-

sible models. I include it here as an example. Of course, the numerical values 
for the ML estimates of the b parameters will differ across models (i.e., b

1
“means” different things and is model specific). Now it becomes clear that 



hypothesis 4 (H
4
), for example, has its corresponding model (g

4
). This is a set 

of first-order models with all the variables entering a linear model. The model 
set is crude; however, there are little data and so more complex models might 
not be justified. Note how knowledge of sample size affects the number of 
parameters that might reasonably be estimated; this requires some experience. 
However, even a C student just finishing a class in applied regression would 
surely not attempt to estimate 8–10 parameters from this data set. This will 
serve as our initial example in later chapters.

The cement data have high levels of dependencies (correlations) among the 
predictor variables as is typical of most problems where a regression analysis 
might be appropriate. If all the regressor variables are mutually orthogonal 
(uncorrelated) then analytical considerations are more simple. Orthognality 
arises in controlled experiments where the factors and levels are designed to 
be orthogonal. In observational studies, there is often a high probability that 
some of the regressor variables will be mutually quite dependent. Rigorous 
experimental methods were just being developed during the time these data 
were taken (about 1930). Had such design methods been widely available and 
the importance of replication understood, then it would have been possible to 
break the unwanted correlations among the x variables and establish cause and 
effect if that was a goal.

2.3.2 Models of Bovine TB Transmission in Ferrets

Caley and Hone’s (2002) models for disease transmission dealt with the age-
specific force of infection, l(a) for various age classes and the age-specific 
disease prevalence model with (a > 0) and without (a = 0) disease-induced 
mortality. Their model for H

1
 without disease-induced mortality was

1− −e la ,

where a ≤ s and s is the suckling period. The corresponding model for H
1
 with 

disease-induced mortality was

l

l a

a l

a l

1−( )
−

−

−

e

e (

( )

)
.

a

a

Simple graphs of their hazard rates help in understanding the models derived. 
They introduced a guarantee parameter (I ) for the period when ferrets were 
not exposed to infection (Fig. 2.2). If a > s, then the corresponding hazard 
models are

1− −e ls ,

where s is the suckling period and no disease-induced mortality, and

l
l a

a l

a l
a( )( )

( )
( )1−

−

−

−
− −e

e
e

a

a
a s
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H1

H4 H5 = H1 + (H3 or H4)

H2 H3

0
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FIG. 2.2. Constant hazard functions used by Caley and Hone (2002) in modeling hypoth-
eses concerning tuberculosis transmission in feral ferrets in New Zealand.

with disease-induced mortality. In addition, all models had a gender effect and 
a site effect (data were collected at seven sites). The hazard models become 
tedious (see their Table 2.1) and they then defined p

i
 to be the modeled prob-

ability of infection. A binomial likelihood function was then used where 
the data were y = the number of infected individuals from a total of n

i
 in 

each gender class (see data in Table 2.2). Thus, p̂
i
 = y

i
 / n

i
 as an estimate of 

p = E(y
i
)/n

i
. Several bounds and constraints were placed on parameter val-

ues during the optimization; additional details are given by Caley and Hone 
(2002). Clearly, a great deal of effort was made to derive models that accu-
rately portrayed the hypotheses about disease transmission and the force of 
infection (l) as functions of age, gender, guarantee time, and disease-induced 
mortality.

2.4 Additional Examples of Modeling

The first example provides some details on models and how the models might 
help in developing interesting science hypotheses. This is followed by  further 
considerations in the Exercises section. The other two examples are more typical 
where the task is merely to well represent the science hypotheses by models.



2.4.1 Modeling Beak Lengths

Beak size bimodality in Darwin’s finches (Geospiza fortis) on the island of 
Santa Cruz, Galapagos, Ecuador has been of interest since the early 1960s. 
Hendry et al. (2006) provide some background and analysis results on this 
set of evolutionary issues. Here we will take a hypothetical view of the data 
and general science question and provide alternative approaches to provide 
insights into hypothesizing and modeling. This example will use just beak 
length, while Hendry et al. (2006) performed a principal components analysis 
on several measurements to estimate beak “size.” I will not address these real 
world complexities here as I want to focus on a different way to approach the 
evolutionary questions of interest. This approach is not claimed to be better in 
any way; only different to give the reader a feeling for both hypothesizing and 
modeling. Interested readers are encouraged to read Hendry et al. (2006) for 
their results with the real data.

Beak length data were collected on 1,755 birds during 1964–2005 at Acad-
emy Bay, adjacent to the town of Puerto Ayora. Histograms of the  measurements
suggested bimodality in the early years; however, this bimodality was lost in 
concert with marked increases in human population density and activity over 
time. This observation led to hypotheses about evolutionary forces promot-
ing bimodality and driving adaptive radiation into multiple  species over time. 
Perhaps the increased human disturbance blocked or at least hampered the 
radiation and bimodality in recent years at this site. While this extension of 
the problem is only to illustrate some principles, it will follow some aspects 
of the real situation described by Hendry et al. (2006).

Before proceeding, it is interesting to note a confirmatory aspect of this 
study. There are many variables that have changed on this island over the 
past 40–50 years. A descriptive approach might have taken measurements 
on many variables and asked which is the better predictor or which varia-
bles have the highest adjusted R2 value? This is a “shot gun approach” and 
exposes the investigator to a high probability of finding spurious effects. The 
 confirmatory approach asks a more specific question (is human disturbance 
associated with evolutionary changes in bill length?), after trying to think hard 
about the issue.

We first hypothesize that the bimodality observed in the histograms (per 
year sample sizes were roughly 100) was largely an artifact. Perhaps another 
bin size for the histograms would not show any pronounced bimodality. Thus, 
we begin with the hypothesis (H

1
) that the sample data were taken from a 

unimodal population (this model might be of particular use in the analysis 
of data for the later years). Beak lengths cannot be negative; so I will use the 
gamma model instead of the more usual normal model. The gamma distribu-
tion (denote this first, unimodal, model as g

1
) is

g x
x x

1

1

( )
( )

.
/

=
− −a b

aa b
e

Γ
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This model (a PDF) has two parameters, a and b, and x is the beak length. 
Note the expanded model notation to make it clear that the model is a function 
of the data x. This complicated looking model has a nice simple form (Fig. 2.3)
and seems adequate as a mathematical representation of the measurement data 
on beak lengths (assuming unimodality).

This distribution is useful in that its mean value is estimated as  â b ̂   and the 
variance is estimated as âb ̂ 2. The shape of the distribution changes depending 
on the values of a and b; thus, the gamma distribution, like many statistical 
distributions, is a family of curves. Note too, in this type of modeling there 
is no response variable, instead it is the distribution of bill lengths (x) that is 
being modeled.

Considering the apparent observed bimodality, one might consider a mixture
of two gamma distributions as a second model. This hypothesis assumes there 
is a small-beaked phenotype with some variability across individuals around 
a mean. Similarly, a large-beaked phenotype has some variability across 
 individuals around a different (larger) mean. Thus, it is quite possible that 
an individual from the small-beaked phenotype might have a longer beak than an 
individual from a large-beaked phenotype. The data are hypothesized to be 
an unknown mixture of the two (perhaps highly variable) phenotypes. These 
considerations lead to a model (g

2
) for the second hypothesis, H

2
 (Fig. 2.4):

g g g2 1= + −p p( ) ( )( ),s b

where the parameter π is the “mixture coefficient” and g
s
 and g

b
 are gamma 

distributions for small (s)- and big (b)-beaked individuals, respectively. Here, 
0 ≤ π ≤ 1 and is the proportion of the population that have small beaks. For 
example, if 17% of the individuals in a given year were from a population of 
small-beaked phenotypes, then

0
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FIG. 2.3. The hypothesis of unimodality in finch bill lengths is represented as a gamma 
distribution.



g g g2 0 17 0 83= +. ( ) ( . )( ).s b

Of course, the two gamma distributions above would each have parameters 
a and b to specify the exact shape of the distributions. This model has five 
parameters: p, a, and b for the small-beaked animals and an a and b for the 
big-beaked animals. If we have a way to measure the strength of evidence for 
these two models we could answer questions about unimodality vs. bimodal-
ity: i.e., compare models g

1
 vs. g

2
.

Now we hypothesize (H
3
), a linear change in bimodality over years and 

this is easily done by adding a submodel on the mixture coefficient π. We 
take model 2 and extend it to obtain a model that allows bimodality to change 
(drift) over years:

g g g3 1= + −p p( ) ( )( )s b

and replace the parameter π (in two places) with the submodel

p b b= +0 1( ),T

where T is the year of the study. The parameter π no longer appears in the 
model as it is replaced by the submodel that allows the mixture to be a func-
tion of year. Carrying out this substitution,

g T g T g3 0 1 0 11= +( )⋅ + − +( )⋅b b b b( ) ( ) ( ( )) ( ).s b

FIG. 2.4. The model representing the hypothesis that finch bill lengths arise from an 
unknown mixture of two phenotypes, each phenotype is modeled as a gamma distribution.
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This model has six parameters: b
0
, b

1
, a, and b for the small-beaked ani-

mals, and an a and β for the big-beaked animals (p has been deleted and the 
two b parameters added). Hendry et al. (2006) hypothesized that bimodality 
decreased after the first few years (T), thus we expect b ̂

1
 to be negative in this 

example. This model gets directly at the main evolutionary hypotheses; this is 
the role of these models.

We can hypothesize still other plausible alternatives, as Chamberlin would 
have urged. The bimodality was hypothesized to change over years (that is H

3
)

but perhaps caused or at least influenced by human population density over 
time (T) and associated disturbance (denote this environmental covariate as 
X

1
 not to be confused with bill length, x). This covariate was measured; so we 

have the model (g
4
) to represent the fourth hypothesis (H

4
):

s bg g g4 1= + −p p( ) ( )( ).

Now replace the mixture coefficient π with a similar submodel, but with the 
human covariate as

p b b= +0 1 1( ).X

In a sense, g
3
 asked what? while g

4
 begins to ask why?

We now turn our attention to a supposed covariate dealing with yearly pre-
cipitation (denote this as X

2
). We will assume this variable has been measured 

and we will let it enter the analysis as binary: 1 for heavy precipitation and 0 
for virtually no rainfall (the usual case). One can already see the pattern here 
as we will hypothesize (H

5
) that the bimodality is influenced by (only) pre-

cipitation over the years of the study. Its associated model is

g g g5 1= + −p p( ) ( )( ),s b

where p = b
0
 + b

1
(X

2
).

An astute biologist then hypothesizes (H
6
) that bimodality is influenced 

by both human activity (X
1
) and precipitation (X

2
), leading to an expanded 

submodel for π:

g g g

X X
6

0 1 1 2 2

1= + −
= + +

p p
p b b b

( ) ( )( ),

( ) ( ).
s b

Finally, investigators hypothesize (H
7
) to reflect interest in an interaction term 

in the submodel for π as

g g g

X X X X
7

0 1 1 2 2 3 1 2

1= + −
= + + +

p p
p b b b b

( ) ( )( ),

( ) ( ) ( * ).
s b

This model has eight parameters: b
0
, b

1
, b

2
, b

3
, a, and b for the small-beaked 

animals, and an α and b for the big-beaked animals. [I hope it is clear that the 
b parameters differ from model to model; i.e., the value for the MLE for b

1
and the interpretation differ by model.]



Given the sample of 1,755 beak measurements and the seven models of 
the seven science hypotheses, one could estimate the model parameters using 
maximum likelihood (see Appendix A) and proceed with a formal analysis 
of the evidence for each of the seven. Note that there is a nice one-to-one 
mapping of each hypothesis with its model. Of course, each submodel could 
have been hypothesized to be quadratic (or even cubic), but additional b para-
meters would be needed to chase these potential nonlinearities. This example 
attempts to show how hypothesizing and modeling can have catalytic effects. 
We will see this example again in the subsequent chapters.

2.4.2 Modeling Dose Response in Flour Beetles

Young and Young (1998:510–514) give as an example (originally from Bliss 
1935) of modeling acute mortality of flour beetles (Tribolium confusu) caused 
by an experimental five-hour exposure to gaseous carbon disulfide (CS

2
). The 

data are summarized in Table 2.3. The sample size is the 471 beetles in the 
dose–response experiment. One can see from Table 2.3 that the observed 
mortality rate increased with dosage. It is typical to fit a parametric model to 
effectively smooth such data, hence to get a simple estimated dose–response 
curve and confidence bounds, and to allow predictions (perhaps even outside 
the dose levels used in the experiment (i.e., extrapolation) ).

A generalized linear models approach may easily, and appropriately, be 
used to model the probability of mortality, π

i
, as a function of dose level x

i
.

The likelihood function for the data for a single dose is assumed to be bino-
mial and is proportional to

L( | , ( ) .p p pn y y n yand binomial) ∝ 1− −

This notation (above) is read – the likelihood of the unknown mortality param-
eter π, given the data (the n and y) and the binomial model. The likelihood 
function would be different with different data or when using a model other 
than the binomial. Use of the binomial model brings certain assumptions with 

TABLE 2.3. Flour beetle mortality at eight dose levels of CS
2
 (from Young 

and Young 1998).

 Number of beetles

Dose (mg/L) Tested Killed Observed mortality rate

49.06 49 6 0.12
52.99 60 13 0.22
56.91 62 18 0.29
60.84 56 28 0.50
64.76 63 52 0.83
68.69 59 53 0.90
72.61 62 61 0.98
76.54 60 60 1.00

2.4 Additional Examples of Modeling  41



42  2. Data and Models

it, such as independence). Note, as is always the case, likelihoods are products 
of probabilities and functions of only the unknown parameters; everything 
else is known (i.e., given). Shorthand notation includes L(π|data) or just L if 
the context is clear. The symbol “∝” means “proportional to” because a con-
stant term (the binomial coefficient), independent of the model parameters, 
has been omitted (Appendix A).

The flour beetles were dosed at eight levels and the likelihood for the entire 
data set is merely a product of the eight binomial likelihoods (given the usual 
assumption of independence, which seems quite reasonable here):

L p p pi i i i

y

i

n y

i

n y i i i| binomialand ,( ) ∝ ( ) −( ) −

=
∏ 1

1

8

or just the shorthand

L p p pi i

y

i

n y

i

i i i| .data  or ( ) ∝ ∝ ( ) −( ) −

=
∏L 1

1

8

This likelihood sets up a model of the unknown mortality probabilities, 
but they do not depend on dose. Thus, we can hypothesize some monot-
onic parametric submodels involving dose p

i
≡ p(x

i
). I will denote dose 

at level i simply as x
i
 and constrain the probability of mortality (π) to be 

within 0–1.
In the context of generalized linear models, there must be a nonlinear trans-

formation (i.e., link function) of p(x) to give a linear structural model in the 

based linear model but no single model form that is theoretically the correct, 
let alone true, one. We consider three commonly used generalized linear mod-
els and associated link functions: logistic, hazard, and probit. Each of these 
models has two unknown parameters that may be estimated from the data 
using ML. The logistic model form is
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The hazard function and the associated complementary log–log link func-
tion are
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and
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parameters. There are several commonly used forms for such a link-function



The cumulative normal model and associated probit link are
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Here, f(•) denotes the standard normal cumulative probability distribution, 
which does not exist in closed form.

In each of the three cases above, the model is sigmoidal, bounded by 0 and 
1, and has two parameters. These are little more than descriptive models; i.e., 
they have about the “right” shape and have been useful in this class of experi-
ments since the 1930s. The link functions let the investigator “think” of the 
models as simple regressions, a + bx and this is a useful construct.

Substituting the logistic model for dose level into the likelihood for a prod-
uct of binomials gives
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where x
i
 is the dose level and the likelihood (L above) is formally L(a,b|data). 

Thus ML can be used to get the MLEs â    and b ̂ (the probabilities of mortality are 
removed and they are replaced by a simple function of dose level, x

i
). This particu-

lar example happens to be logistic regression and can be done easily in software 
packages (e.g., SAS Institute 2004). This is another example where one might 
start with a simple model, such as the binomial model here. Assuming independ-
ence (Sect. 6.1 and Appendix A), one can take the product of all eight binomials 
as the likelihood. Then, adding submodels in place of one or more model para-
meters can bring tremendous flexibility and realism to the modeling process.

At some early point we must ask if a model fits the data in a reasonable way. 
A simple Pearson observed vs. expected chi-square comparison often suffices 
as a goodness-of-fit (GOF) assessment:
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where O
j
 is the observed values and Ê

j
 is the estimated expected values. These 

test statistics each have six degrees of freedom (=8 − 2, as each model has two 
estimated parameters). The chi-square statistic is

c
p

p p
2

2

1

8

1
=

−( )
−( )=

∑ y n

n
i i i

i i ii

ˆ

ˆ ˆ
.

2.4 Additional Examples of Modeling  43

∫



44  2. Data and Models

Goodness-of-fit results are

 Model χ2

 cloglog 3.49
 probit 7.06
 logit 7.65

indicating a good fit for each of the three models. Normally GOF is assessed 
only for the global model; in this case there is no such model, but three non-
nested competitors all with K = 2 unknown model parameters (see Appendix A). 
If the response variable is continuous, there are a large number of standard 
diagnostics and procedures to analyze residuals; these are widely available in 
computer software.

A key feature of this beetle mortality example is causality. The  experimentally 
applied dose caused the observed mortality. By the design we can establish 
a priori that (1) the only predictor needed, or useful, is dose and (2) monotonicity
of expected response should be imposed (i.e., the higher the dose, the higher 
the probability of death). The issue about a model is thus reduced to one of an 
appropriate functional form, hence, in a generalized linear models framework, 
to what is the appropriate link function. However, as a result, we have no global 
model, but rather several (three were used) alternatives for a best causal-
predictive model (many observational studies lack a global model).

2.4.3 Modeling Enzyme Kinetics

Over many years, a series of models have been developed for understanding 
enzyme inhibition (Nelder 1991; Brush 1965, 1966). This field has matured 
and I will give some general models that have found use in this issue. We 
will review four models, each representing a hypothesis concerning the rate 
of enzyme-mediated reaction (R). There are only two predictor variables: 
S = substrate concentration and I = inhibiting substance. Four hypotheses are 
represented by the following models:
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Two of the model parameters have scientific interpretations: b
1
 is the maximum

reaction rate and b
2
 is the half saturation level. Parameters b

3
 and b

4
 are 

called inhibition kinetic values. Here each hypothesis has been represented 
by its associated model and we can speak of hypothesis i or model i synony-
mously. The parameters can be estimated using ML methods and inferences 
made. Critically, we would like measures of the evidence for each of the four 
 hypotheses in the set: “What is the empirical support for hypothesis i vs. j?” 
A set of models such as this does not arise overnight; instead, these models are 
the result of much effort in the laboratory and much analytical thought. Model 
building should take full advantage of past research.

that often only a single hypothesis and its model are the focus of the study. 
Clyde (2000) and Remontet et al. (2006) provide examples of multiple models 
and model selection in this important area.

2.5 Data Dredging

Data dredging (also called post hoc data analysis) begins after the planned 
(a priori) analysis and after inspecting those results. Data dredging should 
generally be minimized or avoided, except in (1) the early stages of explora-
tory work or (2) after a more confirmatory analysis has been completed. In 
this latter case, the investigator should fully admit to the process that lead to 
the post hoc results and should treat the results much more cautiously than 
those found under the initial, a priori approach. One approach in post hoc
analyses is to start with the best model (from the a priori results) and expand 
around it. When done carefully, we encourage people to explore their data 
beyond the important a priori phase. Still, post hoc results are like skating 
on thin ice – lots of risks of getting in trouble (i.e., finding effects that are 
 spurious because noise is being modeled as structure).

I recommend a substantial, deliberate effort to get the a priori thinking and 
models in place and try to obtain more confirmatory results; then explore the 
post hoc issues that often arise after seeing the more confirmatory results. 
Data dredging activities form a continuum, ranging from fairly trivial (venial) 
to the grievous (mortal). There is often a fine line between dredging and not 
dredging; my advice is to stay well toward the a priori end of the continuum 
and thus achieve a more confirmatory result. One can always do post hoc
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analyses after the a priori analysis; but one can never go from post hoc to 
a priori. Why not keep one’s options open in this regard?

Grievous data dredging is endemic in the applied literature and still 
 frequently taught or implied in statistics courses without the needed caveats 
 concerning the attendant inferential problems. Rampant rummaging through 
the data looking for patterns and then “testing” them would be called, in any 
other human endeavor, cheating.

Running all possible models is a thoughtless approach and runs the high 
risk of finding effects that are, in fact, spurious if only a single model is 
chosen for inference. If prediction is the objective, model averaging is use-
ful and estimates of precision should include model selection uncertainty; 
these are subjects to be addressed in later sections of this book. Even in 
this case, surely one can often rule out many models on a priori grounds 
(e.g., the cement hardening data). There are recent papers in major journals 
that provide the results of analyses where well over a million models have 
been run with sample sizes <100. I suspect nearly every result was actually 
spurious in such cases. Running all possible models is usually a signal of an 
unthinking science approach.

2.6  The Effect of a Flood on European Dippers: 
Modeling Contrasts

Lebreton et al. (1992) provided a small set of capture–recapture data on the 
European Dipper (Cinclus cinclus). This is a small bird that spends its life 
along small streams; the data come from eastern France and were collected by 
Marzolin. The study took place over seven years; thus there are six survival 
intervals. A flood took place toward the end of the second survival interval and 
continued into the beginning of the third survival interval. The simple  science
question asked if survival probability was lower in the two flood years. Note 
that causation (the flood caused lowered survival) cannot be addressed here as 
this is an observational study, not a strict experiment.

Some notation is needed; let j be the time-averaged annual survival 
 probability while j

f
 and j

nf
 be the time-averaged annual survival probabilities 

for flood and nonflood years, respectively. Specifically, j is the conditional 
 probability that a dipper survives the annual interval and stays on the study 
area, given it is alive at the beginning of the interval. Finally, we denote the 
time-averaged probability of capture or recapture as p.

2.6.1 Traditional Null Hypothesis Testing

Standard practice would be to define a null and alternative hypothesis and 
their corresponding models. The null hypothesis (H

0
) would be that there is 



no effect (exactly no effect) of the flood on annual survival probability, while 
the alternative hypothesis (H

a
) would be that the flood did have an effect on 

annual survival probability. So, we have two models representing the null and 
alternative hypothesis, respectively:

H
0
: {j,p} with two unknown parameters

H
a
: {j

f
,j

nf
,p} with three unknown parameters

The null model is nested within the more general alternative model and 
this fact allows standard “tests” to be computed to address the issue of a 
flood effect on annual survival probabilities. This test is done by testing 
(only) the null hypothesis; the alternative is not the subject of the test. If 
the null is rejected, then, by default, the alternative is said to be supported. 
The alternative hypothesis (the one the investigator usually believes) is 
never tested.

2.6.2 Information-Theoretic Approach

The information-theoretic approach would begin with the same two hypotheses, 
{j,p} and {j

f
, j

nf
,p}, claiming that these models are only simple approxi-

mations to the complex reality. There is no need that the models are nested 
(they happen to be in this case). The information-theoretic approach asks 
for  measures of relative support (i.e., from the data, empirical) for the two 
hypotheses. It is not alleged that hypothesis {j,p} is exactly true; rather it is a 
hypothesis and a model that are approximations.

In this early example, perhaps relatively little thought went into the hypoth-
eses to be included in the set – two hypotheses seem “obvious.” A little more 
thought suggests that other hypotheses could be examined (as Bacon and 
Chamberlin would have wanted):

● Was there a survival effect just the first year of the flood {j
f1
,j

nf
,p}?

● Or just the second year of the flood {j
f2
,j

nf
,p}?

● Or was the recapture probability (p) also effected by the flood {j
f
,j

nf
,p

f
,p

nf
}?

● Or even {j,p
f
,p

nf
}, where survival was not impacted, but the recapture prob-

abilities were?

Note that few of the models above are nested; thus each model must be tested 
against the null and this raises the multiple testing problem, a scourge of null 
hypothesis testing. Traditional tests do not allow much evidence about the 
relative merit of the four hypotheses/models above.

Thinking hard about hypotheses to be evaluated before data analysis nearly 
always has its clear rewards. In this simple example, the addition of four more 
hypotheses was not particularly “heavy mental lifting” but in more challeng-
ing problems considerable thought is usually required. We must all do more to 
encourage a culture of hard thinking and rigor in scientific work. A premium 
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must be placed on thinking, innovation, and creativity – do not expect the 
computer to tell us what is “important.”

Simple problems such as the dipper problem can be effectively addressed 
with the methods developed in this text; just because the problem is simple 
does not mean one must use null hypothesis testing methods.

2.7 Remarks

Romesburg (2002) wrote a fascinating book about thinking and the creative 
spirit; I have found this very useful and recommend it.

Chatfield (1995a,b) provides very good guidelines concerning statistical 
practice. Gotelli and Ellison (2004) provide sage advice on data handling and 
archiving. Manly’s (1992) book covers both sampling and design issues and is 
easy reading.

Chamberlin’s paper is well worth reading after more than 100 years. How 
many papers in Science have been reprinted in the same journal (as was Cham-
berlain’s in 1890 and in 1965)?

Fisher first published on his likelihood approach when he was a third year 
undergraduate (1912) and a very much extended account in 1922. Likelihood 
is among the great achievements in statistics (like aspirin in medicine); it is 
the backbone of statistical thinking, including Bayesian approaches. It might 
be noted that the Fisher information matrix addresses precision (a measure of 
repeatability) when translated into the covariance matrix, rather than strictly 
information. Of course, precision is tied to “information.” The first book 
(Edwards 1976) on likelihood was written well after Fisher’s fundamental 
paper on the subject in 1922; this was followed by an expanded treatment in 
1992. It is fitting that Edwards was Fisher’s last Ph. D. student. Oddly, there 
are still relatively few books on the subject (good examples include Azzalini 
1996; Royall 1997; Severini 2000; Pawitan 2001); like the ubiquitous “delta 
method”–everyone is supposed to (somehow) know it!

Draper and Smith (1981) provide a review of results found by others that 
have analyzed the cement hardening data (also see Hald 1952 and Hand 
1994). Hendry et al. (2006) give an analysis of the actual data on beak size 
in Darwin’s finches; the hypothetical example here takes their work in a 
conceptually different modeling direction. Additional results on bovine 
tuberculosis in feral ferrets in New Zealand are provided by Caley and Hone 
(2005).

Many papers exist on modeling but there is a clear need for a nice book 
synthesizing the literature and providing effective examples. Levins (1966), 
Leamer (1978), Gilchrist (1984), Lehman (1990), Starfield et al. (1990, 1991), 
Cox (1990, 1995), O’Connor and Spotila (1992), Scheiner and Gurevitch 
(1993), and Lunneborg (1994). Chatfield (1995a,b, 1991), Nichols (2001), 
and Shenk and Franklin (2001), and Zuur (2007) offer good introductions into 



the statistical modeling literature. White and Lubow (2002) provide examples 
of modeling data from differing sources.

Much of statistical theory is based on an assumption about so-called inde-
pendence and this is often compromised with data in the life sciences. What 
is required, in general, is a correct likelihood for the data that reflects any 
dependence. There is a simple way to handle some lack of  independence in 
making inferences (Sect. 6.1). An easy reading paper on spurious effects 
and how to minimize these is Anderson et al. (2001a). Inferential problems 
when using convenience sampling are outlined by Anderson (2001), but 
see also Hairston (1989) and Eberhardt and Thomas (1991).

2.8 Exercises

1. Reread the paper by Caley and Hone (2002).

a. They demonstrated that estimating the force of infection (λ) from 
age-prevalence data is possible and assists in discriminating between 
 alternative hypotheses about routes of disease transmission. Discuss 
this finding and compare it with similar studies of disease transmission 
in humans.

b. Their hypothesis concerning dietary-related transmission from the age 
of weaning had the best empirical support. Think hard about this and 
ask if there are logical next steps in understanding the transmission 
issue. For example, since there was a debate or controversy over this 
whole issue, what might you want as an opponent?

c. What would your value judgment be concerning inductive inferences from 
their sample data to the five populations of ferrets in New Zealand?

2. For those readers with an advanced understanding of mathematical statis-
tics, what worries might you have about getting MLEs of the parameters 
in the seven models of beak lengths in Darwin’s finches? What might be 
done to avoid problems here?

3. What is “wrong” in merely presenting the eight estimates of flour  beetle 
mortality probability as a function of dose level, either in a table or a 
 simple graph? Why go through the modeling and reparameterization 
(e.g., the substitution of a submodel involving the parameters β

0
 and β

1
for π)? What is the principle here and what are the advantages? (Advanced 
 question).

4. Can you think of any model in the life sciences that is strictly true? What 
about the physical sciences? Or medicine? Or economics? If possible, ask 
people in those disciplines for examples of exactly true models in their 
field. How would a person know with certainty that the true model was in 
the set, but not know which one is was? Lastly, how do we know a model 
is exactly true? Can you imagine methods that would allow one to deter-
mine (e.g., test for) the exact truth of a model? [Probably not a good Ph.D. 
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project.] This would be a case where the form of the true model would be 
known, but not its parameters. It seems a shame that true models do not 
come with their true parameters, making estimation unneeded!

5. Few editors, associate editors, and reviewers seem to be aware of the infer-
ential issues with unadulterated data dredging. They seem to believe that 
all analysis results are created equal and it makes no difference if the 
hypothesis was posed before or after data analysis. Discuss this issue. How 
can this issue be improved so our science moves ahead more rapidly?

6. Linhart and Zucchini (1986) analyzed data on weekly storm events at a 
botanical garden in Durban, South Africa. They had data over 47  consecutive 
years and were interested in prediction of weekly storm events (i.e., i = 1, 
2,…, 52 weeks). They knew that an estimator of the probability of a storm 
in week i was p̂

i
 = y

i
 / 47, where y

i
 is the number of storms in week i. Thus, 

they computed the binomial estimator (an MLE) for all 52 weeks. Critique 
this approach. What is “wrong” here?




