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Information Theory and Entropy

Solomon Kullback (1907–1994) was born in Brooklyn, New York, USA, and 
graduated from the City College of New York in 1927, received an M.A. degree 
in mathematics in 1929, and completed a Ph.D. in mathematics from the George 
Washington University in 1934. Kully as he was known to all who knew him, had 
two major careers: one in the Defense Department (1930–1962) and the other 
in the Department of Statistics at George Washington University (1962–1972). He 
was chairman of the Statistics Department from 1964–1972. Much of his pro-
fessional life was spent in the National Security Agency and most of his work 
during this time is still classified. Most of his studies on information theory 
were done during this time. Many of his results up to 1958 were published in his 
1959 book, “Information Theory and Statistics.” Additional details on Kullback 
may be found in Greenhouse (1994) and Anonymous (1997).

When we receive something that decreases our uncertainty about the state of the 
world, it is called information. Information is like “news,” it informs. Informa-
tion is not directly related to physical quantities. Information is not material and 
is not a form of energy, but it can be stored and communicated using material 
or energy means. It cannot be measured with instruments but can be defined in 
terms of a probability distribution. Information is a decrease in uncertainty.
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This textbook is about a relatively new approach to empirical science called 
“information-theoretic.” The name comes from the fact that the foundation 
originates in “information theory”; a set of fundamental discoveries made 
largely during World War II with many important extensions since that time. 
One exciting discovery is the ability to actually quantify  information and this 
has led to countless breakthroughs that affect many things in our daily lives 
(e.g., cell phone and global positioning system technologies). One might think 
of information theory as being things like coding and encrypting theory and 
signal transmission, but it is far more general than these subjects.

Allowing “data analysis” to hook up with information theory has had 
 substantial advantages and statistical scientists are still trying to exploit this 
combination. The concepts and practical use of the information-theoretic 
approach are simpler than that of hypothesis testing, and much easier than 
Bayesian approaches to data analysis.

Before proceeding further, I want to summarize the necessary “setting.” 
This setting will set the tone for all of the following material. I will assume 
the  investigator has a carefully considered science question and has proposed 
R hypotheses (the “multiple working hypotheses”), all of which are deemed 
plausible. A mathematical model (probability distribution) has been derived to 
well represent each of the R science hypotheses. Estimates of model para meters 
(q) and their variance–covariance matrix (Σ) have been made under either a least 
squares (LS) or maximum likelihood (ML) framework. In either case, other 
 relevant statistics have also been computed (adjusted R2, residual analyses, 
goodness-of-fit tests, etc.). Then, under the LS framework, one has the residual 
sum of squares (RSS), while under a likelihood framework, one has the value 
of the log-likelihood function at its maximum point. This value (either RSS 
or max log(L) ) is our starting point and allows answers to some of the 
relevant questions of interest to the investigator, such as:

● Given the data, which science hypothesis has the most empirical support 
(and by how much)?

● What is the ranking of the R hypotheses, given the data?
● What is the probability of, say, hypothesis 4, given the data and the set of 

hypotheses?
● What is the (relative) likelihood, say, of hypothesis 2 vs. hypothesis 5?
● How can rigorous inference be made from all the hypotheses (and their 

 models) in the candidate set? This is multimodel inference.

3.1 Kullback–Leibler Information

The scope of theory and methods that might be classed as “information the-
ory” is very large. I will focus primarily on Kullback–Leibler information and 
this comes from a famous paper by Soloman Kullback and Richard Leibler 
published in 1951. Their work was done during WWII and published soon 
after the termination of the war.



Kullback–Leibler Information

In the context of this book, Kullback–Leibler (K–L) information is a function 
denoted as “I” for information. This function has two arguments: f represents 
full reality or “truth” and g is a model. Then, K–L information I(f, g) is the

“information” lost when the model g is used to approximate full  reality, f.

An equivalent, and very useful, interpretation of I(f, g) is the

“distance” from the approximating model g to full reality, f.

Under either interpretation, we seek to find a candidate model that mini-
mizes I(f, g), over the hypothesis set, represented by models.

Thus, if one had a set of five hypotheses, each represented by a model, 
I(f, g) would be computed for each of the five. The model with the smallest 
 information loss would be the best model and, therefore, would represent the 
best hypothesis. The model g has its parameters given; there is no estimation 
and no data involved at this point (this will change as we go forward).

Alternatively, one could interpret the model with the smallest I(f, g) value as 
being “closest” to full reality. Thus, when a “best model” is mentioned, the “best” 
will stem from the concept of the smallest information loss or a model being 
closest to full reality. This is a conceptually simple, yet powerful, approach. The 
idea of a “distance” between a model and full reality seems compelling.

Kullback–Leibler information is defined by the unpleasant-looking integral 
for continuous distributions (e.g., the normal or gamma):
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K–L information is defined as the summation for discrete distributions (e.g., 
Poisson, binomial, or multinomial):
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Here, there are k possible outcomes of the underlying random variable; the 
true probability of the ith outcome is given by p

i
, while the p

1
,…,p

k
 constitute 

the approximating probability distribution (i.e., the approximating model). In 
the discrete case, we have 0 < p

i
 < 1, 0 < p

i
 < 1, and pi i∑ ∑= p  = 1. Hence, 

here f and g correspond to the p
i
 and p

i
, respectively. In the following material, 

we will generally think of K–L information in the continuous case and use the 
notation f and g for simplicity.

Some readers might start to “lose it” thinking that they must compute K–L 
information loss for each model in the set. It turns out that I(f, g) cannot be used 
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directly because it requires knowledge of full reality (f) and the parameters (q)
in the approximating models, g

i
; we will never have knowledge of these enti-

ties in real problems. We will see that K–L information can be  easily estimated,
without advanced mathematics (although the derivation is very deeply math-
ematical). This estimation requires data relevant to the science question.

Kullback–Leibler information is the most fundamental of all information meas-
ures in the sense of being derived from minimal assumptions and its additivity 
property. It can be viewed as a quantitative measure of the  inefficiency of assum-
ing a model g when truth is f. Again, one wants to select a model from the set that 
minimizes inefficiency. While the Kullback–Leibler distance can be conceptual-
ized as a “distance” between f and g, strictly speaking this is a measure of “dis-
crepancy.” It is not a simple distance because the measure from f to g is not the 
same as the measure from g to f – it is a “directed” or “oriented” distance.

3.2 Linking Information Theory to Statistical Theory

We usually think that “data analysis” is tied in with the subject of “statis-
tics.” How are statistical principles linked with information theory, and K–L 
 information in particular? This linkage was the genius of Hirotugu Akaike in 
an incredible discovery first published in 1973.

A glimpse into the linkage between information and entropy and their 
 relationship to mathematical statistics is given below; a full and technical 
derivation appears in Burnham and Anderson (2002:Chap. 7). I urge people 
to wade through this to gain a notion of the derivation. In particular, when 
there are unknown parameters to be estimated from data, the criterion must 
change. This change is introduced in the derivation to follow:

Akaike’s main steps started by using a property of logarithms (i.e., 
log(A/B) = log(A) − log(B) ) to rewrite K–L information as

I f g f x f x x f x g x x( , ) ( ) log( ( )) ( ) log( ( | )) .= − ∫∫ d dq

Both terms on the right-hand side are statistical expectations (Appendix B) 
with respect to f (truth). Thus, K–L information can be expressed as

I f g E f x E g xf f( , ) [log( ( ))] [log( ( | ))],= − q

each expectation with respect to the true distribution f. This last expression 
provides insights into the derivation of AIC. Note that no approximations 
have been made, no parameters have been estimated and there are no data at 
this point; K–L information has merely been re-expressed.

The first expectation is a constant that depends only on the conceptual true 
distribution and it is not clearly known. However, this term is constant across 
the model set. In other words, the expectation of [log(f(x) )] does not change 



from model to model; it is a constant. Thus, we are left with only the second 
expectation,

I f g C E g xf( , ) [log( ( | ))].− = − q

The constant term (C) can be made to vanish in a subsequent step (Chap. 4). 
The question now is if we can somehow compute or estimate E

f
[log(g(x|q) )]. 

The short answer is no as the criterion or target must be altered to achieve a 
useful result and this will require data.

Kullback–Leibler information or distance I(f, g) is on a true ratio scale, 
where there is a true zero. In contrast, −E

f
[log(g(x|q) )] = − ∫ f(x)log(g(x|q) )dx

is on an interval scale and lacks a true zero, because of the constant (above). 
A difference of magnitude D means the same thing anywhere on the scale. 
Thus, D = 10 = 12 − 2 = 1012 − 1002; a difference of 10 means the same thing 
anywhere on the interval scale. Then, 10 = V

1
 − V

2
, regardless of the size of 

V
1
 and V

2
. A large sample size magnifies the separation of research hypotheses 

and the models used to represent them. Adequate sample size conveys a wide 
variety of advantages in making valid inferences (e.g., improved estimates of 
E

f
[log(g(x|q) )]).

3.3 Akaike’s Information Criterion

Akaike introduced his information-theoretic approach in a series of papers 
in the mid-1970s as a theoretical basis for model selection. He followed 
this pivotal discovery with several related contributions beginning in the 
early 1980s and classified these as falling under the entropy maximization 
principle. This world class discovery opened the door for the development 
of relatively simple methods for applied problems, ranging from simple to 
quite complex, but based on very deep theories – entropy and K–L informa-
tion theory on the one hand and Fisher’s likelihood theory (see Appendix A) 
on the other.

Akaike’s (1973) seminal paper used Kullback–Leibler information as a 
fundamental basis for model selection and recognized model parameters 
must be estimated from data and there is substantial uncertainty in this 
estimation. The estimation of parameters represents a major distinction 
from the case where model parameters are assumed to be known. Akaike’s 
finding of a relation between the K–L information and the maximized log-
likelihood has allowed major practical and theoretical advances in model 
selection and the analysis of complex data sets. deLeeuw (1992) said it 
well, “Akaike found a formal relationship between Boltzmann’s entropy 
and Kullback–Leibler information (dominant paradigms in information 
and coding theory) and maximum likelihood (the dominant paradigm is 
statistics).”
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Akaike’s next step was stymied as no way could be found to compute or 
estimate the second term, E

f
[log(g(x|q) )]. However, the expectation of this 

quantity led to a major breakthrough. Data enter the derivation and allow 
parameter estimates (q̂ )Akaike found that he could not estimate K–L, but he 
could estimate the expectation of K–L information. This second expectation 
is over the data (denote these data as y)

E
f
[log(g(x| q̂ ))],

where the estimates q̂  are based on the data (y).

The Modifi ed Target

Akaike showed that the critical issue became the estimation of

E
y
E

x
[log(g(x| q̂ (y))].

This double expectation, both with respect to truth f, is the target of all 
model selection approaches based on K–L information. This notation 
makes it clear that the first (outer) expectation is over the data (y) and these 
data allow estimates of the unknown model parameters. Thus, we now 
have modified the target of relevance here due to the need for data to esti-
mate model parameters. The proper criterion for model selection relates to 
the fitted model. The modification required is expected K–L information; 
Akaike called this a “predictive likelihood.”

Akaike realized that this complex entity was closely related to the log-
likelihood function at its maximum. However, the maximized log- likelihood 
is biased upward as an estimator of this quantity. Akaike found that, under 
certain conditions, this bias is approximately equal to K, the number of esti-
mable parameters in the approximating model. This is an asymptotic (mean-
ing as sample size increases to infinity) result of fundamental importance.

Thus under mild conditions, an asymptotically unbiased estimator of

Ey
E

x
[log(g(x| q̂ (y))] = log(L(q̂ |data) – K.

This stunning result links expected K–L information to the maximized  log-like-
lihood (log(L) ) corrected for bias. The important linkage is summarized as, 

negentropy = K–L information and E(K–L information) = log(L) − K

 thermodynamics information theory statistics 

Akaike’s final step defined “an information criterion” (AIC) by multiplying 
both terms through by −2 (“ taking historical reasons into account”). Thus, 
both terms in log(L(q̂ | data) ) − K were multiplied by −2 to get

AIC = –2log(L(q̂  )|data) + 2K.



This has become known as Akaike’s Information Criterion or AIC. AIC has 
a strong theoretical underpinning, based on entropy and expected  Kullback–
Leibler information. Akaike’s inferential breakthrough was finding that the 
maximized log-likelihood could be used to estimate the expected (averaged) 
K–L distance between the approximating model and the true generating 
mechanism. The expectation of the logarithm of f(x) drops out as a constant 
across models, independent of the data.

In practice, one computes AIC for each of the models in the set and then 
selects the model that yields the smallest value of AIC for inference. One justi-
fies this selection because that selected model minimizes the information lost 
when approximating full reality by a fitted (i.e., parameters estimated from 
the data using, for example, ML or LS methods) model. Said another way, 
that selected model is “closest” to full reality, given the data. This approach 
seems a very natural, simple concept; select the approximating model that is 
closest to the unknown reality.

It might be argued that I should have merely defined l = log(L(q|data,model));
then AIC = −2l + 2K, making the criterion appear more simple. While this may 
have advantages, I believe the full notation works for the reader and helps in 
understanding exactly what is meant. The full notation, or abbreviations such 
as log(L(q|x,g

i
) ), makes it implicit that the log-likelihood is a function of 

(only) the parameters (q); while the data (x) and model (g
i
, say multinomial) 

must be given (i.e., known). These distinctions become more important when 
we introduce the concept of a likelihood of a model, given the data: L(g

i
|data)

in Chap. 4. Both concepts are fundamental and useful in a host of ways in this 
book and the notation serves an important purpose here.

3.3.1 The Bias Correction Term

Correction of estimators for bias has a long history in statistics. The usual 
estimator of the variance is a ready example

variance =
−

−
∑ ( )

,
x

n
i m^ 2

1

where the subtraction of 1 from the sample size (n) in the denominator corrects 
for a small sample bias (note that as n gets large the bias correction becomes 
unimportant). The bias correction term (K = the number of estimable param-
eters), above, is a special case of a more general result derived by Takeuchi 
(1976) and described in Sect. 3.9.1. AIC is a special case of Takeuchi’s Infor-
mation Criterion (TIC) and is, itself, a parsimonious approach to the estima-
tion of expected K–L information.

3.3.2 Why Multiply by −2?

Akaike multiplied the bias-corrected log-likelihood by −2 for “historical rea-
sons.” It is a well-known statistical result that −2 times the logarithm of the 
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ratio of two maximized likelihood values is asymptotically chi-square dis-
tributed under certain conditions and assumptions (this is the likelihood ratio 
test). The term −2 occurs in other statistical contexts, and so it was not unrea-
sonable that Akaike performed this simple operation to get his AIC. Three 
points frequently arise and I will note these here.

First, the model associated with the minimum AIC remains unchanged had 
the bias-corrected log-likelihood (i.e., log(L) − K) been multiplied by −0.17, 
−51.3, −3.14159, or any other negative number. Thus, the minimization is not 
changed by the multiplication of both terms by any negative constant; Akaike 
merely chose −2. Second, some investigators have not realized the formal 
link between expected K–L information and AIC and believed, then, that the 
number 2 in (only) the second term in AIC was somehow arbitrary and that 
other multipliers should also be considered. This error has led to consider-
able confusion in the technical literature; −K is the asymptotic bias correc-
tion and is not arbitrary. Akaike chose to work with −2log(L), rather than 
log(L); thus the term + 2K is theoretically correct for large sample size. As 
long as both terms (the log-likelihood and the bias correction term) are mul-
tiplied by the same negative constant, the model where the criterion is mini-
mized is unchanged and there is nothing arbitrary. Third, −2log(L) is termed 
“ deviance” in mathematical statistics. People with a statistical background 
immediately interpret deviance as a way to quantify lack of fit and they then 
view AIC as simply “deviance + 2K.” I suspect that this was Akaike’s thinking 
when he multiplied through by −2; that is simply, “deviance penalized by 2K
to correct for asymptotic bias.”

3.3.3 Parsimony is Achieved as a by-Product

AIC is linked directly to the estimation of expected K–L information. The der-
ivation itself was not based on the concept of parsimony. It was after Akaike’s 
elegant derivation of AIC that people noticed a heuristic interpretation that 
was interesting and allowed insight into how parsimony is enforced with AIC. 
The best model is closest to full reality and, therefore, the goal is to find the 
model where AIC is smallest. The first term (the deviance) in AIC

AIC = −2log(L(q̂)| x) +2K

is a measure of lack of model fit, and can be made smaller by adding more 
parameters in the model g

i
. Thus, for a fixed data set, the further addition of 

parameters in a model g
i
 will allow it to fit better. However, when these added 

parameters must be estimated (rather than known or “given”), further uncer-
tainly is added to the estimation of expected K–L information or distance. At 
some point, the addition of still more estimated parameters will have the oppo-
site effect and the estimate of expected K–L information will increase because 
“noise” is then being modeled as if it were structural. The second term in AIC 
(2K) then functions as a “penalty” for adding more parameters in the model. 



Thus, the penalty terms (2K) gets larger as more parameters are added. One 
can see that there is a tension between the deviance and the  penalty term as the 
number of parameters is increased – a trade-off.

Without a proper penalty term the best model would nearly always be the 
largest model in the set, because adding more and more parameters to be 
 estimated from the fixed amount of data would be without “cost” (i.e., no pen-
alty). The result would be models that are overfit, have low precision, and risk 
spurious effects because noise is being modeled as structure.

This heuristic explanation does not do justice to the much deeper theo-
retical basis for AIC (i.e., the link with expected K–L information). How-
ever, the advantage of adding parameters and the concomitant disadvantage 
of adding still more parameters suggests a trade-off. This is the trade-off 
between bias and variance or the trade-off between underfitting and overfit-
ting that is the Principle of Parsimony (see Sect. 2.4). Note that parsimony 
was not a condition leading to AIC, instead parsimony appears almost as a 
by-product of the end result of the derivation of AIC from expected K–L 
information.

Inferences for a given data set are conditional on sample size. We must 
admit that if much more data were available, then further effects could prob-
ably be found and supported. “Truth” is elusive; model selection tells us what 
inferences the data support, not what full reality might be. Full reality cannot 
be found using a finite data set.

3.3.4 Simple vs. Complex Models

Data analysis involves the critical question, “how complex a model will the 
data support?” and the proper trade-off between underfitting and overfitting. 

inference. As biologists, we think certain variables and structure must be in a 
‘good model’ often without recognition that putting in too many variables and 
too much structure introduces large uncertainties, particularly when sample 
size is relatively small or even moderate. In addition, interpretability is often 
decreased as the number of parameters increases.

As biologists, we have a strong tendency to want to build models of the 
information in the data that are too complex (overfit). This is a parsimony 
issue that is central to proper model selection. One cannot rely on intuition 
to judge a proper trade-off between under- and overfitting, a criterion based 
on deep theory is needed. Expected K–L information and AIC provide the 
basis for a rigorous trade-off. This seems a very natural, simple concept; select
the fitted approximating model that is estimated, on average, to be closest to 
the unknown full reality, f.

Ideal model selection results in not just a good fitting model, but a model 
with good out-of-sample prediction performance. This is a tall order. The 
selected model should have good achieved confidence interval coverage for the 
estimators in the model and small predictive mean squared errors (PMSE).
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3.3.5 AIC Scale

As defined, AIC is strictly positive. However, during an analysis, it is com-
mon to omit mathematical terms that are constant across models and such 
shortcuts can result in negative values of AIC. Computing AIC from regres-
sion statistics often results in negative AIC values. This creates no problem, 
one just identifies the model with the smallest value of AIC and declares it 
is the model estimated to be the best. This fitted model is estimated to be 
“closest” to full reality and is a good approximation for the information in the 
data, relative to the other models considered. For example,

 Model AIC

 g
1
 1,400

 g
2
 1,570

 g
3
 1,390

 g
4
 1,415.

One would select model g
3
 as the basis for inference as it has the smallest 

AIC value; meaning that it is estimated to be closest to full reality. Because 
these values are on a relative scale, one could subtract, say, 2,000 from each 
and have the following rescaled AIC values: −600, −430, −610, and −585. 
The rank of each model is not changed by the rescaling; the ranks, in each 
case remain g

3
 (best), g

1
, g

4,
 and g

2
 (worst). I have seen AIC values that range 

from −80,000 to as high as 340,000 in different scientific applications. It is 
not the absolute size of the AIC value, it is the relative values, and particu-
larly the differences, that are important (Chap. 4).

3.4 A Second-Order Bias Correction: AICc

Second-Order Bias Correction: AICc

Akaike derived an asymptotically unbiased estimator of expected K–L infor-
mation; however, AIC may perform poorly if there are too many estimated 
parameters in relation to the size of the sample. A second-order variant of AIC 
has been developed and it is important to use this criterion in practice:

AICc 2 log( ( )) 2
1

,= - +
- -

L q^ K
n

n K
⎛
⎝⎜

⎞
⎠⎟

where n is sample size. This can be rewritten as

AICc 2 log( ( )) 2K
2 ( 1)

1
= - + + +

- -
L q^ K K

n K

or equivalently

AICc = AIC +
2 ( + 1)

1
.

K K
n K- -



AICc merely has an additional bias correction term. If n is large (asymp-
totic) with respect to K, then the second-order correction is negligible 
and AICc converges to AIC. AICc was derived under Gaussian assumptions 
and is weakly dependent on this assumption. Other model-specific assump-
tions can be made and this might be worthwhile in data analysis where there 
are severe controversies or consequences (Burnham and Anderson 2002:
Chap. 7). The use of AICc is highly recommended in practice; do not use 
just AIC.

3.5 Regression Analysis

Least squares regression is a very useful approach to modeling. Here, model 
selection is often thought of as “variable selection.” It is easy to move from 
regression statistics such as the residual sum of squares (RSS) to the log-like-
lihood function at its maximum point; this allows one to use AICc. Note, LS 
and ML provide exactly the same estimates of the b

j
 in linear models; how-

ever, the estimates of the residual variance s2 can differ appreciably if sample 
size is small. 

Mapping the RSS into the Maximized Log-Likelihood

The material to this point has been based on likelihood theory (Appendix 
A) as it is a very general approach. In the special case of LS estimation 
(“regression”) with normally distributed errors, and apart from a constant, 
we have

log( )
2

log .2L = - .n
( )ŝ

Substituting this expression, AICc for use in LS models can be expressed 
as

AICc = log( ) + 2
1

,2n K
n

n K
s^

- -
⎛
⎝⎜

⎞
⎠⎟

where s e^ 2 2
= Σ ˆ

i
n  (the MLE) and ê

i
 are the estimated residuals for a par-

ticular candidate model.
A common (but minor) mistake is to take the LS estimate of s2 from 

the computer output, instead of the ML estimate (above). In regression 
models, K is the total number of estimated parameters, including the 
intercept and s2. The value of K is sometimes computed incorrectly as 
either b

0
 or s2 are mistakenly ignored in obtaining K. AICc is easy to 

compute from the results of LS estimation in the case of linear models. 
It is not uncommon to see computer software that computes simple AIC 
value incorrectly; few packages provide AICc; however, this can be com-
puted easily manually.
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Given a set of candidate models g
i
, with parameters to be estimated from 

the observed data, the model which minimizes the predictive expectation is 
“closest” to full reality (f) and is to be preferred as a basis for inference. AICc 
allows an estimate as to which model is best for a given data set; however, 
a different best model might be selected if another (replicate) data set was 
available. These are stochastic biological processes, often with relatively high 
levels of complexity, we must admit to uncertainty and try to quantify it. This 
condition is called “model selection uncertainty.” We must also admit that if 
much more data were available, then further effects could probably be found 
and supported. “Truth” is elusive; proper model selection helps us understand 
what inferences the data support.

AICc attempts to reformulate the problem explicitly as a problem of approxi-
mation of the true structure (probably infinite dimensional) by a model. Model 
selection then becomes simply finding the model where AICc is minimized. 
I will show in a later chapter that model selection is much more than this.

AICc selection is objective and represents a very different paradigm to that of 
null hypothesis testing and is free from the arbitrary a levels, the multiple test-
ing problem, and the fact that many candidate models are not nested. The prob-
lem of what model to use is inherently not a null hypothesis testing problem.

The fact that AIC allows a simple comparison of models does not justify 
the comparison of all possible models. If one had 10 variables, then there are 
1,024 possible models, even if interactions and squared or cubed terms are 
excluded. If sample size is n ≤ 1,000, overfitting is almost a certainty. It is 
simply not sensible to consider such a large number of models because an 
overfit model will almost surely result and the science of the problem has 
been lost. Even in a very exploratory analysis it seems like poor practice to 
consider all possible models; surely some science can be brought to bear on 
such an unthinking approach. I continue to see papers published where tens of 
thousands or even millions of models are fit and evaluated; this represents a 
foolish approach and virtually guarantees spurious effects and absurdities.

As a generally useful rule, when the number of models (R) exceeds the sam-
ple size (n), one is asking for serious inferential difficulties. I advise  people to 
think first about their set of a priori science hypotheses; these will typically be 
relatively few in number. A focus on models is the result of computer software 
that is very powerful, but unthinking.

3.6 Additional Important Points

3.6.1 Differences Among AICc Values

Often data do not support only one model as clearly best for data analysis (i.e., 
little or no model selection uncertainty). Instead, suppose three models are 
essentially tied for best, while another subset of models is clearly not appropri-
ate (either under- or overfit). Such virtual “ties” for the estimated best model 



must be carefully considered and admitted. The inability to ferret out a single 
best model is not a defect of AICc or any other selection criterion, rather, it is an 
indication that the data are simply inadequate to reach such a strong inference.

It is perfectly reasonable that several models would serve nearly equally well 
in approximating the information in a set of data. Inference must admit that 
there are sometimes competing hypotheses and the data do not support selecting 
only one. Large sample sizes often reduce close ties among models in the set. 
The issue of competing models is especially relevant in including model selec-
tion uncertainty into estimators of precision and model averaging (Chap. 5).

Consider studies of Plasmodium infection of children in tropical Africa and 
data from two different sites have been modeled and fitted. The best model for 
the eastern site has AIC = 104, whereas the best model for the western site has 
AIC = 231. Are the models better for the western site? Perhaps, however, just 
the fact that the best model for the western site has a larger AIC value is not
evidence of this. AIC values are functions of sample size and this precludes 
comparing AIC values across data sets.

3.6.2 Nested vs. Nonnested Models

The focus should be on the science hypotheses deemed to be of interest. 
 Modeling of these hypotheses should not be constrained to only models that 
are nested. AICc can be used for nonnested models and this is an important 
feature because likelihood ratio tests are valid only for nested models. The 
ranking of models using AICc helps clarify the importance of modeling.

3.6.3 Data and Response Variable Must Remain Fixed

It is important that the data are fixed prior to data analysis. One cannot switch 
from a full data set to one where some “outliers” have been omitted in the mid-
dle of the analysis. It would be senseless to evaluate two hypotheses using data x
and the remaining four hypotheses using a somewhat different data set. The fixed 
nature of the data is implied in the shorthand notation for models: g(q |data), the 
model as a function of the known parameters (q), given the (fixed) data (x).

Some analyses can be done on either the raw data or some grouping of the 
raw data (e.g., histogram classes). In such cases, one must be consistent in per-
forming the analysis on one data type or the other, not a mixture of both types. 
Any grouping of the raw data loses some information, thus grouping should be 
carefully considered.

If Y is the response variable of interest, it must also be kept fixed during the 
analysis. One cannot evaluate models of Y and then switch to models of log(Y)
or Y . Having a mix of response variables in the model set is an “apples and 
oranges” issue. Such changes make the AICc values uninterpretable; more 
importantly, the science problem is muddied. For example,  presence–absence
data on some plant species cannot be compared to counts of that plant on a 
series of plots.
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3.6.4 AICc is not a “Test”

Information-theoretic approaches do not constitute a statistical “test” of any 
sort (see Appendix C). There are no test statistics, assumed asymptotic sam-
pling distributions, arbitrary a-levels, P-values, and arbitrary decision about 
“statistical significance.” Instead, there are numerical values that represent the 
scientific evidence (Chaps. 4 and 5), often followed by value judgments made 
by the investigators and perhaps others.

It is poor practice to mix evidence from information-theoretic approaches 
with the results of null hypothesis testing, even though this is a common mis-
take in the published literature. One sees cases where the models are ranked 
using AICc and then a “test” is carried out to see if the best model is “signifi-
cantly better” than the second-best model. This is seriously wrong on several 
different technical levels and I advise against it. Null hypothesis testing and 
information-theoretic results are like oil and water; they do not mix well.

3.6.5 Data Dredging Using AICc

Ideally science hypotheses and their models are available prior to data analysis 
and, ideally, prior to data collection. These a priori considerations led to a con-
firmatory result. Following that, I often encourage some post hoc examination 
of the data using hypotheses and models suggested by the a priori results. Such 
after-thoughts are often called “data dredging.” I do not condone the use of infor-
mation-theoretic criteria in data dredging, even in the early phases of exploratory 
analysis. For example, one might start with 8–10 models, compute AICc for each, 
and note that several of the better models each have a gender effect. Based on 
these findings, another 4–7 models are derived to include a gender effect. After 
computing AICc for these models, the analyst notes that several of these models 
have a trend in time for some parameter set; thus more models with this effect are 
derived, and so on. This strategy constitutes traditional data dredging but using 
an information theoretic criteria instead of some form of test statistic or visual 
inspection of plots of the intermediate results. I recognize that others have a more 
lenient attitude toward blatant data dredging. I think investigators should under-
stand the negative aspects of data dredging and try to minimize this activity.

3.6.6 Keep all the Model Terms

It is good practice to retain all the terms in the log-likelihood in order for AICc 
to be comparable across models. This is particularly important for nonnested 
models (e.g., the nine models of Flather, Sect. 3.9.6) and in cases where dif-
ferent error distributions are used (e.g., log-normal vs. gamma). If several 
computer programs are used to get the MLEs and the maximum log(L), then 
one is at risk that some terms in one model were dropped, while these terms 
were not dropped in other models. This is a rather technical issue: Burnham 
and Anderson (2002, Sect. 6.7) provide some insights and examples.



3.6.7 Missing Data

A subtle point relates to data sets where a few values of the response variable 
or predictor variables are missing. Such missing values can arise for a host of 
reasons, including loss, unreadable recording, and deletion of values judged 
to be incorrect. If a value or two are missing from a large data set, perhaps no 
harm is done. However, if the missing values are numerous at all then more 
careful consideration is called for. In particular, if some values for covariates 
are missing, this can also lead to important issues, including the fact that some 
software may either stop or give erroneous results. There are ad hoc routines 
for assigning “innocent” values to be used in place of the missing values; 
these could be considered. There are a variety of Bayesian “imputation” tech-
niques that have merit; these are far beyond the scope of this text. The real 
moral here is to collect data with utmost care and in doing so, avoid issues 
with missing data.

3.6.8 The “Pretending Variable”

Putting aside the second-order correction for bias for a moment, AIC is 
just −2log(L) + 2K or deviance + 2K. The addition of each new parame-
ter suffers a “penalty” of 2. Now, consider the case where model A has K
parameters and model B has K + 1 parameters (i.e., one additional param-
eter). Occasionally, we find that model B is about 2 units from model 
A and thus, we would view model B as a good model – it is a good model. 
Problems arise when the two AIC values are about 2 units apart but the devi-
ance is little changed by the addition of a variable or parameter in model B. In 
this case, the additional variable does not contribute to a better fit, instead, it 
is a “good” model only because the bias correction term is only 2 (i.e., 2 × 1). 
This should not be taken as evidence that the new parameter (and the variable 
it is associated with) is important. The new parameter is only “pretending” to 
be important; to confirm this, one can examine the estimate of the parameter 
(perhaps a regression coefficient b) and its confidence interval. However, the 
real clue here is that the deviance did not change and this is an indication that 
the model fit did not improve.

I will call this issue a “pretending variable” as a noninformative variable 
enters as one additional parameter and therefore incurs only a small “penalty” 
of about 2, but does not increase the log-likelihood (or decrease the deviance). 
Is this model (B) a good model? YES. Can we take this result to further imply 
that the added variable is important? NO. Thus, scientists must examine the 
table of model results to be sure that added variables increase the log-likelihood 
values. Pretending variables may arise for any models i and j in the set where 
the difference in AIC values increase by about 2. Less commonly, a model (call 
it C) will add two parameters and its added penalty is 4 (still a decent model). 
However, unless there is a change in the log-likelihood, the two new variables 
or parameters are only “pretending” to be important. Finally, when using AICc, 
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the values are a bit different from 2 or 4; still a focus on the log-likelihood or 
deviance is advised, to be sure that the fit has improved.

3.7 Cement Hardening Data

The computation of AICc from the cement hardening data from Sect. 2.2.1 is 
shown in the table below:

Model K ŝ 2 log(L) AICc Rank

{mean} 2 208.91 −34.72 74.64 5
{12} 4 4.45 −9.704 32.41 1
{12 1*2} 5 4.40 −9.626 37.82 2
{34} 4 13.53 −16.927 46.85 3
{34 3*4} 5 12.42 −16.376 51.32 4

PROC REG (SAS Institute 1985) was used to compute the residual sum of 
squares (RSS), the LS estimates of the b parameters, and the standard errors 
of the parameter estimates for each model. The MLE of the residual variance 
is ŝ 2 = RSS/n, where the sample size (n) = 13. AICc = nlog(ŝ 2) + 2K + 2K(K
+ 1)/(n − K − 1) was used. The calculations can be illustrated using the infor-
mation from the {mean} model above where K = 2. The MLE of the residual 
variance is 208.91, thus the first term in AICc is 13 log(208.91) = 69.444, the 
second term is 2·2 = 4, and the third term is (2·2·3)/(13 − 3) = 1.2. Summing 
the three terms leads to 74.64. The computations are easy but the reader should 
compute a few more entries in the table above to be sure they understand 
the notation and procedure. Note, log-likelihood values are usually negative, 
while AICc values are generally positive.

3.7.1 Interpreting AICc Values

AICc is an estimator of expected K–L information and we seek the fitted 
model where the information loss is minimal. Said another way, we seek the 
model where the estimated distance to full reality is as small as possible; this 
is the model with the smallest AICc value. The model that is estimated to be 
closest to full reality is referred to as the “best model.” This best model is {12} 
from the table above, namely,

E(Y) = b0 + b
1
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1
) +b

2
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2
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with four parameters (K = 4 = b
0
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1
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, and s 2).

The {mean} model in the table is just the mean and variance of the response 
variable, thus only two parameters are estimated, b

0
 and s 2. The model nota-

tion {12 1*2} denotes the model
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where an interaction term is introduced. This model is estimated to be the 
second best model; however, one can quickly see that the interaction is not an 
important predictor by examining the MLEs and their standard errors:

 Parameter MLE ŝe(b̂)

 b
1
 1.275 0.581

 b
2
 0.636 0.091

 b3 0.004 0.012

Note that the estimated standard error on b̂3
 is three times larger than the 

MLE, thus it certainly seems to be unimportant. This result allows an impor-
tant, but subtle, point to be made here. Let us ask two questions from the 
information above. First, is the interaction model {12 1* 2} a relatively good 
model? The answer is YES, this can be seen from the table of AICc  values. 
Second, does this answer imply that the interaction term is an important 
 predictor? The answer is no; to judge its importance one needs to examine the 
standard error of the estimate and a confidence interval (i.e, −0.020 to 0.028 
for b

3
). This interval was computed as b̂

3
 ± 2 × ŝe(b̂3

) and is essentially cen-
tered on zero and fails to support the hypothesized importance of b

3
.

Another thing to note is that the scale (i.e., the size, Sect. 3.3.5) of the AICc 
values is unimportant. One cannot look at the AICc value for the third model 
(37.82) and judge weather it is “too big” or not “big enough.” These AICc 
values have unknown constants associated with them and are functions of 
sample size. It is the relative values of AICc that are relevant. In fact, we will 
see in Chap. 4 that it is the differences in AICc values that become the basis 
for extended inferences.

Of course AICc allows a quick ranking of the five hypotheses, repre-
sented by the five models. The ranks are (from estimated best to worst): 
g

2
, g

3
, g

4
, g

5
, and g

1
 for this simple example. Models {34} and {34 3*4} 

are poor and the mean-only model is very poor in the rankings. The ability 
to rank science hypotheses is almost always important; however, it will be 
seen that far more information can be gained using methods introduced in 
the following chapter.

3.7.2 What if all the Models are Bad?

If all five models are essentially worthless, AICc will still rank them; thus, 
one must have some way to measure the worth of the best model or the global 
model. In regression, a natural measure of the worth of a model is the adjusted 
R2 value. In other contexts, one can use a method outlined by Nagelkerke (1991) 
for a likelihood-based analysis. In this case of cement hardening, the model 
 estimated to be the best in the set was model {12} with an adjusted R2 = 0.974. 
This suggests that the best model is quite good, at least for these data.
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If this best model and its MLEs were used with a new, replicate data set, 
one would find that the adjusted R2 would be substantially lower than 0.974. 
Adjusted R2 exaggerates our notions about the out-of-sample predictive 
 ability of models fit to a given data set. The derivation of AICc is based on 
a  predictive likelihood and this attempts to optimize performance  measures
such as predictive mean squared error. Thus, AICc attempts to deal with out-
of-sample prediction by its very derivation. Even model {34 3*4} had an 
adjusted R2 = 0.921. R2 is a descriptive statistic and should not be used for 
formal model selection (it is very poor in this regard). A likelihood version of 
“R2” is given in Appendix A and is useful when the analysis has been done in 
a likelihood framework.

The danger of having all the models in the set be useless arises most often 
in exploratory work where little thought went into hypothesizing science 
 relationships or data collection protocols. I have seen a number of habitat–
 animal association models where the best model in the set had an R2 value 
around 0.06, certainly indicating that more work is needed. In such cases, the 
rankings of the models carry little meaning.

Generally some assessment of the worth of the global model is suggested. 
This assessment might be a goodness-of-fit test, residual analysis, adjusted R2,
or other similar approach. If a global model fits, AICc will not select a more 
parsimonious model that fails to fit. Thus, it is sufficient to check the worth 
and fit of the global model. Often it is appropriate to provide an R2 value for 
the best model in reports or publications.

Another approach relies on including a “null” model in the set to evaluate 
the worth of particular hypotheses or assumptions. Consider a study of growth 
in tadpoles where density is a hypothesized covariate. One could evaluate a 
model where growth depends on density and another model where growth is 
independent of density. This procedure, used carefully, might allow insights 
as to the worth of models in the set. Details for such evaluations are given in 
Chap. 4.

3.7.3 Prediction from the Best Model

One goal of selecting the best model is to use it in making inferences from 

and prediction is one objective. In this case, prediction would come from the 
model structure:

E(Y) = b0 + b
1
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) +b
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where x
1
 = calcium aluminate and x

2
 = tricalcium silicate. The least 

squares estimates of b
1
 and b

2
 allow predictions to be made from the fitted 

model:

E(Ŷ) = 52.6 + 1.468(x
1
) + 0.662(x

2
)

the sample data to the population. This is model based inductive inference 



The adjusted R2 for this model is 0.974 suggesting that prediction is expected 
to be quite good until one realizes that the out-of-sample prediction perform-
ance might be poor with a sample size of 13 and the fitting of four parameters. 
This issue will be further addressed in Chap. 5.

3.8  Ranking the Models of Bovine 
Tuberculosis in Ferrets

The computation of AICc from the tuberculosis data allows a ranking of the 
five science hypotheses and these are shown in the table below:

Hypotheses K log(L) AICc Rank

H
1
 6 −70.44 154.4 4

H
2
 6 −986.86 1,987.2 5

H
3
 6 −64.27 142.1 3

H
4
 6 −45.02 103.6 1

H
5
 6 −46.20 105.9 2

AICc for the model corresponding to H
5
 is computed as

AICc = − + + +
− −

= − − + ⋅

+ ⋅ ⋅

2 2
2 1

1
2 46 20 2 6

2 6 7

log( ( ))
( )

( . )

( ) /(

L q^ K
K K

n K
662 5 92 4 12 1 474 105 9− = + + =) . . . .

Because K = 6 for all five models in this example, AIC and AICc would 
select the same model.

Parameter estimates for these models were MLEs and there were no 
estimates of residual variance ŝ 2; instead, the maximized value of the log-
likelihood was available directly. Here it is easy to compute AICc, given 
the number of estimable parameters (six for each model here), the sample size 
(n = 62), and the value of the maximized log-likelihood function (tabled 
above) for each of the five models. The reader is asked to verify the com-
putation for a few entries in the table to be sure they understand the issues. 
Note, too, because a likelihood approach was used here, there is no statistics 
strictly analogous to an R2 value in the usual (i.e., least squares) sense 
(but see Nagelkerke (1991) for a useful analog. A final technical note is 
that there is often no unique measure of “sample size” for binomial out-
comes such as these; Caley and Hone were conservative in using n = 62 in 
this case.

Empirical support favors H
4
, the dietary-related hypothesis as the best of 

the five hypotheses. Ranking hypotheses from best to worst was H
4
, H

5
, H

3
,

H
1
, and H

2
. Clearly, H

2
 (transmission during mating and fighting from the age 
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of 10 months when the breeding season starts) seems very poor relative to the 
other hypotheses. Such observations and interpretations will be made more 
rigorous in Chap. 4. At this time it might be reasonable to begin to wonder 
about the ranking of hypotheses if a different data set of the same size was 
available for analysis; would the rankings be the same? This issue is termed 
“model selection uncertainty” and will turn out to be very important.

3.9 Other Important Issues

3.9.1 Takeuchi’s Information Criterion

I mention Takeuchi’s information criterion (TIC) but it is rarely used in practice. 
However, it is important in the general understanding of information criteria. 
Akaike’s derivation assumed, at one step, an expectation over the model (not 
full reality). This has lead to the assumption that AIC was based on a true model 
being in the set; although Akaike clearly stated otherwise in his papers.

Takeuchi (1976), in a little known paper in Japanese, made the first pub-
lished derivation clearly taking all expectations with respect to full reality. 
Takeuchi’s TIC is an asymptotically unbiased estimate of expected K–L and 
does not rest in any way on the assumption that a “true model” is in the set. 
TIC is much more complicated to compute than AICc because its bias adjust-
ment term involves the estimation of the elements of two K × K matrices of 
first and second partial derivatives, J(q) and I(q), the inversion of the matrix 
I(q), and then the matrix product. TIC is defined as

TIC = −2log(L(q̂ )|data) + 2tr(J(q)I(q)–1),

where “tr” is the matrix trace operator. Unless sample size is very large, the 
estimate of tr(J(q)I(q)−1) is often numerically unstable; thus, its practical 
application is nil (I have never seen TIC used in application). However, it 
turns out that a very good estimate of this messy term is merely K or K + 
K(K + 1)/(n − K − 1), corresponding to AIC and AICc. Thus, it can be seen 
that AIC and AICc represent a parsimonious approach to bias correction! That 
is, rather than trying to compute estimates of all the elements in two K by K
matrices, inverting one, multiplying the two, and computing the matrix trace, 
just use K or K + K(K + 1)/(n − K − 1), as these are far more stable and easy to 
use. [In fact, if f was assumed to be in the set of candidate models, then for that 
model tr(J(q)I(q)−1) ≡ K. If the set of candidate models includes any decent 
models, then tr(J(q)I(q)−1) is approximately K for those models.]

It is important to realize that the deviance term nearly always dwarfs the 
“penalty” term in AICc or TIC. Thus, poor fitting models have a relatively 
large deviance and, thus, the exact value of the penalty term is not critical in 
many cases.



3.9.2 Problems When Evaluating Too Many Candidate Models

A common mistake is to focus on models without full consideration of 
the all important science hypotheses. Armed with too little science think-
ing and computer software that allows “all possible” models to be fit to 
a  hapless data set, one is ready to find a wide variety of effects that are 
spurious. This is a subtle but important point and there is a large statistical 
literature on this matter. The entire fabric of the investigation breaks down 
in many exploratory studies where sample size might be only 35–80 and 
there are 15–20 explanatory variables, leading to about 33,000 or 1,050,000 
models, respectively. In these cases, one may expect substantial overfitting 
and the finding of many effects that are actually spurious (Freedman 1983; 
Flack and Chang 1987; Anderson 2001). One useful rule of thumb is when 
the sample size is smaller than the number of models (i.e., n < R), then the 
analysis must be viewed as only exploratory (see Burnham and Anderson 
2002:267–284). If one thinks as Chamberlin suggested, the focus will be on 
the science issues and multiple working hypotheses. Then develop models 
to represent these hypotheses, keeping an eye on the science and less so on 
countless models that can be run easily by sophisticated (but unthinking!) 
software. Good application can expect n » R.

Hoeting et al. (2006) provide an example of geostatistical modeling of whip-
tail lizards in southern California. There were 37 predictor variables available, 
leading to 1.4 × 1011 possible models. They were able to reduce the number of 
variables to six which resulted in a tractable 160 models. Three of these were 
judged to be good models and involved similar variables.

3.9.3  The Parameter Count K and Parameters 
that Cannot be Uniquely Estimated

Often there are some parameters in a model that are not uniquely estimable 
from the data and these should not both be counted in K. Such “noniden-
tifiability” can arise due to inherent confounding (e.g., the estimators of 
survival and sampling probabilities, S

t−1
 and f

t
, respectively, in certain band 

recovery models of Brownie et al. 1985). In such cases, the correct value 
of K counts the product S

t−1
f
t
 as a single parameter (not two parameters). 

Here, it is the estimators Ŝ
t−1

 and f̂
t
 that are confounded, not the parameters 

themselves.
Smith et al. (2005) provide another example of nonidentifiablity in their 

study of entomological inoculation rates and Plasmodium falcipraum infec-
tion in children in Africa. Their best model was

PR = − +⎛
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where PR = parasite ratio, b = transmission efficiency, e = annual entomologi-
cal inoculation rate, r = inverse of the expected time to clear an infection and 
1/k = the coefficient of variation of the population infection rate. They found 
that b and r were exactly collinear, only the ratio b/k was relevant or identifi-
able. Thus, K would be 3 in this case: (b/r), e, and 1/k. If an error distribution 
was included, then K would be increased by 1. Nonestimability and noniden-
tifiability are common issues in some life science problems.

Sometimes a parameter is estimated on a boundary and this can be con-
fusing. If the parameter being estimated is a probability (e.g., a transition 
 probability of moving from state i to state j, say y

ij
), then it may be that the 

MLE ŷ is either 0 or 1 (i.e., on a boundary). Often the estimated standard 
error is 0, with a confidence interval of 0 width. In such cases, this parameter 
estimate must enter the count for K, even though some software may indicate 
such a parameter was “not estimated.” Here, the parameter was estimated, 
it just happened that the most likely estimate was 0 or 1 (a boundary) and it 
should be counted in K.

Another technical point is the case where the iterative numerical procedure 
fails to “converge” in likelihood-based estimation. This condition is important 
and is nearly always noted on the output by the software. Until convergence 
is obtained or the specific situation understood, the analysis for that model 
should not go forward (i.e., the maximum of the log-likelihood function has 
not been found). Often, the failure to converge is due to the log-likelihood 
surface (see Appendix A) being nearly perfectly flat over some region in the 
parameter space. Thus, repeated tries to find the exact maximum point can 
fail. Alternatively, the log-likelihood surface might have more than a single 
mode, making valid inference more difficult (but there are many ways to 
address this problem).

3.9.4 Cross Validation and AICc

Basing AICc on the expectation (over q̂ ) of E
x
[log(g(x|q̂ (y)))] provides the 

criterion with a cross validation property for independent and identically 
 distributed samples (Stone 1974, 1977). Golub et al. (1979) show that AIC 
asymptotically coincides with generalized cross validation in subset regression 
(also see review by Atilgan 1996). These are important results for  application
and are another by-product of Akaike’s predictive likelihood. The practi-
cal utility of these findings suggest that computer-intensive cross  validation 
results will average about the same result as just using AICc.

3.9.5 Science Advances as the Hypothesis Set Evolves

Evolution importantly involves time and information. Consider an investi-
gator with R = 5 good, plausible science hypotheses, a mathematical model 
representing each of the five, and a set of relevant data from a proper collec-
tion scheme. Upon completion of the analysis using an information-theoretic 



approach, it may become clear that two of the hypotheses have virtually no 
empirical support; their likelihoods (Chap. 4) are perhaps 3,000 or 6,600 to 
one of having utility.

At this point, one wants the hypothesis set to “evolve” allowing rapid progress 
in learning and understanding the system under study. First, the set is now 
reduced to three plausible alternatives (i.e., the two hypotheses lacking empiri-
cal support can be dropped from further consideration). Second, perhaps the 
three remaining hypotheses can be refined or their models can be made a better 
reflection of the intended hypothesis. Third, more hard thinking and considera-
tion might lead to the introduction of one or more new hypotheses into the set. 
At this point, new data are collected and the process is repeated.

There is some art involved in this evolution. For example, if a large amount 
of new data can be anticipated, one must be careful and not discard some intri-
cate hypotheses with high dimensioned models because such models might 
find support with a much larger data set. Often a scientist might prefer a more 
simple model if it predicts well, has parameters that are directly related to the 
system, and captures the main effects. Thus, there is some flexibility to use a 
model other than that estimated to be best for some inferences. An important 
aspect of science is that it never stops; each step (the set continually evolves) 
tends to lead to new and better understanding. Some steps might go “back-
ward” for awhile, but science has a way of correcting missteps.

3.10 Summary

The crucial, initial starting point for advancement in the life sciences is a set 
of “multiple working hypotheses” defined prior to data analysis. These are 
the result of a determination to address the background science of the issue at 
hand. Following this important step, the science of the matter, experience, and 
expertise are used to define an a priori set of candidate models, representing 
the hypotheses. These are important philosophical issues that must receive 
increased attention. The research problem should be carefully stated, fol-
lowed by careful planning concerning the sampling or experimental design. 
Sample size and other planning issues should be considered fully before the 
data gathering program begins. Information-theoretic procedures are not for 
rectifying poor science questions or resurrecting bad data.

Of course, hypotheses and models not in the set remain out of considera-
tion. AICc can be useful in selecting the best model in the set; however, if all 
the models are very poor, AICc will still select the one estimated to be best 
and rank the rest. However, even that relatively best model will be poor in 
an absolute sense. Thus, every effort must be made to assure that the set of 
hypotheses and models is well founded.

A good model separates “information” from noise or noninformation. We are 
not trying to model the data; instead we are trying to model the information in 
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the data. We are trying to use the data at hand to make inferences about the proc-
ess that generated the data and to make good out-of-sample predictions.

The underlying basis of AIC is (heuristically) a model that minimizes

E I f gq _q^
^

( ( , ( | ))).⋅

This is the K–L distance or information loss, given the model is fit to the 
data (in the sense that parameters are estimated from the data). When faced 
with data and unknown model parameters, the target changes to expected K–L 
information and is based on the fitted model.

The Principle of Parsimony provides a conceptual guide to model selection, 
while expected K–L information provides an objective criterion, based on a 
deep theoretical justification. AICc provides a practical method for model 
selection and associated data analysis and are estimates of expected K–L 
information. AIC, AICc, and TIC represent extensions of classical likelihood 
theory, are applicable across a very wide range of scientific questions, and 
AICc is quite simple to use in practice.

I advise that the theories underlying the information theoretic approaches 
and hypothesis testing are fundamentally quite different. AICc is not a “test” 
in any sense and there are no associated concepts such as test power or 
a-levels; statistical hypothesis testing represents a very different paradigm. 
The results of model selection under the two approaches might happen to be 
similar with simple problems and a large amount of data; however, in more 
complex situations, with many candidate models and less data, the results 
can be quite different.

3.11 Remarks

Guiasu (1977) and Cover and Thomas (1991) provide an overview of the broad 
field of information theory for those wanting to read more. Akaike’s main results 
on this issue appeared in 1973, 1974, and 1977, but these are for the statistically 
and  mathematically gifted. His broader and more contextual papers appeared 
in 1981a and b, 1985, 1992, and 1994 and these are more readable by mortals. 
Many of Akaike’s collected works were published by Parzen et al. (1998) and 
insights into Akaike’s career are found in Findley and Parzen (1995).

Cohen and Thirring (1973) and Broda (1983) give a full account of  Boltzmann’s 
life and science contributions. It is said that Boltzmann was the nineteenth cen-
tury’s greatest scientist. Gallager (2001) and Golomb et al. (2002) provide infor-
mation on Claude Shannon’s life and contributions to information theory. It is 
said that Shannon’s Master of Science thesis is the most famous or well-known 
thesis ever written. Claude Shannon wanted to go into genetics and his Ph.D. 
dissertation (never published) was on genetics. Like Boltzmann, Shannon was 
working far beyond existing science frontiers of the time.



Pronunciation is important; Akaike is pronounced with an accent on the 
“ka” and the “i” is pronounced like an “e” – AKAeke. Leibler is pronounced 
with the accent on the “i” while the “e” is silent – LIbler.

Akaike (1973) considered his information criterion to be a natural exten-
sion of R. A. Fisher’s likelihood theory. It is of historic interest that Fisher 
(1936) anticipated such an advance when he wrote,

“an even wider type of inductive argument may some day be developed, 
which shall discuss methods of assigning from the data the functional 
form of the population.”

Zellner’s book (Zellner et al. 2001) and particularly Forster’s chapter make 
for interesting reading about modeling and inference (also see Jessop 1995 
and Wallace 2004). Some authors view K, the asymptotic bias correction term 
in AIC, as a measure of “complexity.” Perhaps no harm is done in viewing 
it this way; however, it does not need to be so defined. I doubt if our word 
“ complexity” can be quantified in a satisfactory way as a single number or 
quantity. I view K as merely an asymptotic bias correction term.

A technical point: Given a parametric structural model, there is a unique 
value of q that, in fact, minimizes K–L information I(f, g). This (unknown) 
minimizing value of the parameter depends on truth f, the model g through 
its structure, the parameter space, and the sample space (i.e., the structure 
and nature of the data that can be collected). In this-sense there is a “true” 
value of q underling ML estimation (let this value be q

o
). Then q

o
 is the abso-

lute best value of q for model g; actual K–L information loss is minimized 
at q

o
. If one somehow knew that model g was, in fact, the K–L best model, 

then the MLE q̂ would estimate q
o
. This property of the model g(x|q

o
) as 

the minimizer of K–L, over all possible q, is an important feature involved in 
the derivation of AIC or AICc (Burnham and Anderson 2002:Chap. 7).

Another technical point concerns f the conceptual full reality. At a high 
level of abstraction we consider entities such as random variables and proba-
bility distributions. These are intellectual ways of thinking and understanding. 
Such abstraction carries over the notion of full reality which I denote as f. This 
symbol relates to the concept of the best “model” of full reality. There are no 
unknown parameters; reality may not even be parameterized. We parameter-
ize models in an effort to understand full reality, f.

Some computer software use the expression 2log(L) − 2K as “AIC” and 
then the objective is to maximize this across models. While this is not incor-
rect, it is certainly confusing and thus statements such as “bigger is better” 
must be displayed to help the user from getting to worst model and think-
ing it is the best model! I recommend against this practice; AIC has a clear 
 definition and I think it is best to use it.

A colleague wrote his explanation for the “pretending variable” issue. 
 Consider two models, (1) E(Y) = b

o
 + b

1
(X

1
) and (2) E(Y) = b

o
 + b (X

1
) + b

2
(independent random variable). Both models will have essentially the same 
deviance because of the addition of only a “noise” variable. The models will 
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differ by one parameter; the first model has K = 3, whereas the second model 
has K = 4, hence, ∆ for the second model will be bigger that the first model 
by two. The clue here is that the deviance did not change with the addition of 
another variable and its parameter.

The nonparametric bootstrap can be used in model selection; this was 
investigated by Burnham and Anderson (2002) and in general we found the 
performance of the analytic approach to be as good as if not better. Given the 
computer-intensive nature of the bootstrap, we have not given this approach 
much more attention or interest. Still, it is a general approach and might find 
use in some cases.

One can find in the published literature that AIC is only for nested models; 
this statement is incorrect. Likewise, other literature states that AIC is only 
for nonnested models. This, too, is incorrect. The general derivation (e.g., 
Takeuchi 1976 or Burnham and Anderson 2002:Chap. 7) makes no restriction 
concerning nestedness.

The methods outlined in this book apply to virtually all problems where 
a likelihood exists (Lahiri 2001). In addition, there are general information-
theoretic approaches for models well outside the likelihood framework (Qin 
and Lawless 1994; Ishiguro et al. 1997; Hurvich et al. 1998; Pan 2001a,b). There
are now model selection methods for generalized estimation equations, kernel 
methods, martingales, nonparametric regression, and splines. Thus, methods 
exist for nearly all classes of models we might expect to see in the theoretical 
or applied life sciences.

Richard Leibler explained to me (about 1997) that many people thought 
their 1951 paper was a direct result from the war effort. Instead, the moti-
vation for that (now) famous paper was to provide a rigorous definition 
of what Fisher meant by the word “information” in relation to his “suffi-
cient statistics.” Indeed, they showed that all the “information” in the data 
was contained in sufficient statistics, given the model; just as Fisher had 
alleged. Few people realized the importance of the 1951 paper; they got no 
reprint requests for their paper for many years! Also interesting, Leibler 
had never realized that K–L information was the negative of Boltzmann’s 
entropy.

The K–L information or distance has also been called the K–L discrepancy, 
divergence, and number – I will treat these terms as synonyms, but tend to use 
information or distance in the material here (see Ullah 1996 for applications). 
Later, Kullback (1987) preferred the term discrimination information. Kullback 
served as head of the Statistics Department at George Washington University 
from 1964–1972 where he had a profound impact. He believed that information 
theory provides a unification of known results, leads to generalizations and the 
derivation of new results, and offers a unifying principle in statistics.

The second-order bias correction (leading to AICc) stems from Suguira’s 
(1978) work and several follow-up papers by Hurvich et al. While these papers 
are not theoretical contributions on the same scale as Akaike’s papers, they 
are very important in application. One should not use AIC in standard 



application; people should be using AICc, the second-order version of AIC 
(or derive new results if a specific distribution is required, see Burnham and 
Anderson 2002:Sect. 7.4.2).

It must be noted that Rissanen (1989, 1996) has derived a sophisticated 
model selection theory based on information and coding theory. His approach 
is very different, both conceptually and mathematically, than that presented 
in this book. His initial contribution was MDL for minimum description 
length and he has extended this in later publications and books (Rissanen 
2007). The MDL approach does not require prior distributions on param-
eters or models and many people would see this as an advantage in science 
issues. The MDL result was the same form as BIC (Appendix D), but later 
theory expands on this result. I will not go further into Rissanen’s work as it 
is quite technical unless one has the required background in coding theory. 
I note only that this interesting class of “information-theoretic” alternatives 
exists.

Akaike (1973, 1974) used what he called a predictive log-likelihood in 
deriving his information criterion; this has advantages and properties that are 
still not well recognized in the literature. Full discussion of his approach is 
technical and I will not provide more than a few insights here (see Akaike 
1973, 1987:319, 1992; Bozdogan 1987; Sakamoto 1991; deLeeuw 1992; and 
Burnham and Anderson 2002:Chap. 7). His approach involves a statistical 
expectation based on a different, independent sample. It is this second expec-
tation over a conceptually independent “data set” that provides AIC with a 
cross validation property (see Tong 1994; Stone 1977). Akaike’s predictive 
log-likelihood is

E
p
[log(L(q̂ ))] = E

f
E

f
[log(L(q̂ 

y
)|x)].

Thus, E
f
E

f
[log(L  (q̂

y
)| x)] is the “target” of estimation; under certain 

 conditions, log(L(q̂ )) − K is an estimator of this target when sample size is 
large ( asymptotically). The expectation over both the data x and the estimated 
parameters q̂  are taken with respect to the true f(x). This expectation addresses 
the technical issue of parameter uncertainty. Zucchini (2000) provides a nice 
introduction to model selection using a well chosen example that helps under-
standing. Konishi and Kitagawa (2007) provide a technical review of these 
issues and introduce another extension.

It is not easy to see why including a great many models in the candidate 
set is poor practice. One sidesteps this issue if they concentrate on science 
hypotheses first, and then think hard about a good model to represent each 
hypothesis. It is the availability of software to “run practically everything 
in sight” that leads to this confusing issue. Zucchini (2000) provides sev-
eral figures to illustrate the dangers of evaluating an excessive number of 
models.

Some software packages offer a “stepwise AIC” as an option for model selec-
tion (often termed variable selection in regression analysis). This is hardly in 
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the spirit of the information-theoretic approach and I strongly recommend
against it. Such ad hoc procedures strongly encourage an “all possible models”
approach that seems counter to good science. Good science has to be more 
about hard thinking and developing what seem to be plausible hypotheses; 
then proceed to build models as a way to evaluate the strength of evidence for 
these a priori hypotheses.

Shannon Entropy

Claude Shannon, working during the 1940s, is often regarded as the father of 
information theory. Shannon (1948) justified entropy for discrete variables 
with discrete and finitely many outcomes as

H = –Â P
i
log P

i
,

where P
i
 is the probability of outcome i. He approached this by positing three 

conditions that information (in the context of probability) should satisfy. He 
then proved that H was the unique solution that satisfied the conditions. The 
entropy of a probability distribution is

H = –∫p(x)log p(x)dx,

where p(x) denotes the probability density with respect to the measure dx.
Ecologists toyed with computing entropies in the early 1970s (an endeavor 
that Shannon termed the “bandwagon” in an editorial in the Transactions of 
Information Theory). While hundreds of papers presented entropies in leading 
ecological journals, most people now believe that this avenue produced little 
of value. In actuality, the definition of information was designed to help com-
munication engineers send messages, rather than to help people understand 
the meaning of messages.

Goldman (1953) considers information to be the difference between our 
uncertainty before and after receiving a message. In this thinking, information 
is not an absolute quantity as implied from H, but is seen as a change in uncer-
tainty. Let q

i
 be the probability of the ith event before receiving the message 

and p
i
 be the revised probability after receipt of the message. The change in 

the uncertainty is

[–log(q
i
)] – [–log(p

i
)] = log(p

i
) – log(q

i
) = log(p

i
/q

i
).

If the message received indicates that the ith event is certain, then p
i
 = 1 and 

log(p
i
) = 0, resulting in a change in information of −log(q

i
). Jessop (1995) 

terms this “surprisal.” Taking the expectation

E p q p p q[log( / )] log( / )i i i i i= ∑



and is the discrete version of K–L information! Kullback–Leibler information 
is an extension of Shannon’s contribution and is sometimes called a “relative 
entropy” (Hobson and Cheng (1973)). The K–L information between models 
(probability distributions) is a fundamental quantity in science and informa-
tion theory and is the logical basis for model selection.

Boltzmann’s Entropy

Ludwig Boltzmann, working in the late 1800s, originally defined entropy in 
thermodynamics, demonstrated the second law of thermodynamics (e.g., there 
could not be a perpetual motion machine), and proved the irreversibility of 
entropy. Entropy is “disorder,” max entropy is maximum disorder or minimum 
information. While the theory of entropy is a large subject by itself, readers 
here can think of entropy as nearly synonymous with uncertainty.

Conceptually, Boltzmann’s entropy is −log(f(x)/g(x)) and taking its expec-
tation one gets
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which is K–L information (see Good 1979). It is fascinating that Kull-
back–Leibler information is equal to the negative of Ludwig Boltzmann’s 
entropy. Thus, minimizing the K–L information or distance is equivalent 
to maximizing the entropy; hence the name maximum entropy principle
(Jaynes 1957).

Maximizing entropy is subject to a constraint – the model of the  information 
in the data. A good model contains the information in the data, leaving only 
“noise.” It is the noise (entropy or uncertainty) that is  maximized under the 
concept of the Entropy Maximization Principle. Minimizing K–L informa-
tion then results in an approximating model that loses a minimum amount of 
information in the data. Entropy maximization results in a model that maxi-
mizes the uncertainty, leaving only information (the model) “maximally” 
justified by the data. The concepts are equivalent, but minimizing K–L dis-
tance (or information loss) certainly seems the more direct approach. In 
summary,

– entropy = K – L information

and K–L information is often referred to as negative entropy or negentropy.
Boltzmann’s discoveries concerning entropy are seen as the zenith of nine-

teenth century science. Of course, K–L information was derived along very 
different lines than entropy; the mutual convergence is striking and suggests 
something very fundamental. K–L information is averaged entropy, hence 
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the expectation with respect to f. Then, −E(entropy) = K–L information. 
 Boltzmann derived the fundamental theorem that,

entropy is proportional to log(probability).

Entropy, information, and probability are thus linked, allowing probabilities 
to be multiplicative while information and entropies are additive.

3.12 Exercises

1. Cox (2006:117) states, “The relevance of automatic model selection depends 
strongly on the objectives of the analysis, for example as to whether it is for 
explanation or for empirical prediction.” By “automatic model selection” 
I think he means criteria such as AICc, BIC, TIC, etc. Can examples be 
found where an investigator might need to use, say, AICc for prediction, 
but another criteria (or an entirely different approach?) for explanation 
(given the data are fixed)? What theory might bear on his  statement? What 
practical advice might be given as to how to approach model selection 
when the main objectives of the analysis might vary? Discuss this with 
colleagues and see if the premise has merit.

2. In ecology increased diversity is often associated with ecotones. In a sense, 
Akaike was at a science ecotone when he saw a way to relate information 
theory and statistical theory in his AIC. Can you think of other parallels 
of this nature? What might this say about coursework to be taken by an 
exceptional Ph.D. student?

3. Akaike found an analytic expression for the asymptotic bias when the 
maximized log(L) was used as an estimator of expected K–L information; 
this bias correction was simply K, the number of estimated parameters 
in the model. Give other examples of estimators in your field where bias 
adjustments have been found.

4. AICc is simple to compute and understand, but it rests on very deep statis-
tical theory. This makes it an ideal science tool. Give other examples where 
this is the case.

5. The data on hardening of Portland cement had four predictor variables; 
this leads to 24−1 = 15 models. If all 2- and 3-way interactions would have 
been added, how many models would there be? What is the danger here in 
focusing on the models during data analysis?

6. Traditional statistics provided judgments about “significance” and this 
is related to some predefined, but arbitrary a-level. Such terms and 
dichotomies are shunned under the information-theoretic approach. 
Discuss and attempt to reconcile your thoughts on this matter of fixed 
dichotomies.



 7. Examine a recent issue of a journal in your field of interest. Can you find a 
well written paper that carefully sets out several working hypotheses before 
data analysis? In some subdisciplines, such papers can be easily found. Once 
having found such a paper, what approach did the authors use as a measure 
of “strength of evidence” for and against the science  hypotheses?

 8. Atmar (2001) wrote a fitting obituary of Claude Shannon that makes inter-
esting reading. He also references Dawkins (1986:111–112):

A few years ago, if you asked almost any biologist what was special about 
living things as opposed to nonliving things, he would have told you about 
a special substance called protoplasm. Protoplasm wasn’t like any other 
substance; it was vital, vibrant, throbbing, pulsating, “irritable” (a school-
marmish way of saying responsive).… When I was a school boy, elderly text-
book authors still wrote of protoplasm, although, by then, they really should 
have known better. Nowadays you never hear or see the word. It is as dead 
as phlogiston and the universal aether. There is nothing special about the 
substances from which living things are made. Living things are collections 
of molecules, like everything else. What is special is that these molecules are 
put together in much more complicated patterns than the molecules of non-
living things, and this putting together is done by following programs, sets 
of instructions for how to develop, which the organisms carry around inside 
themselves. Maybe they do vibrate and throb and pulsate with “irritability,” 
and glow with living warmth, but these properties all emerge incidentally. 
What lies at the heart of every living thing is not a fire, not a warm breath, 
not a “spark of life.” It is information, words, instructions. It you want a 
metaphor, don’t think of fires and sparks and breath. Think, instead, of a 
billion discrete, digital characters carved in tablets of crystal. If you want to 
understand life, don’t think about vibrant, throbbing gels and oozes, think 
about information technology.

 This thinking is certainly exciting – evolution and life are about informa-
tion! Think hard about this and discuss it with colleagues and instructors. 
Is evolution so much about information? Where might these concepts lead 
us in the life sciences?

 9. Assume you have some data on a well-defined science issue and the 
 models for the four hypotheses are complimentary log–log models for a 
binary response variable. You have n = 19 and the global model has K = 6 
parameters and AIC has been used as the first step in providing measures 
of strength of evidence for the four hypotheses. What is the issue that 
might be of concern here? Why?

10. Your new student questions the concern about models with “too many” 
parameters that must be estimated from the data. You speak of overfitting 
but he insists that biology is complex and some simple models are not 
“realistic.” Prepare a clear response to help him understand this issue.
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11. Recompute the information at the beginning of Sect. 3.7 using AIC.  Provide 
your interpretation of any differences you encounter. What is the “moral” of 
this example?

12. You have just been hired by a government laboratory that has access to a 
very large amount of data from a Superfund site in Georgia. The  questions 
were well formed, data collection was quite sophisticated, and sample sizes 
were very large by any usual standard. You are to work in a team situation 
and the team members have been educated and experienced in a variety of 
relevant disciplines. Some members of the team want to do an analysis using 
AIC, while others have heard about TIC and they favor this approach. They 
look to you for advice and council. What do you tell them? Why?

13. The bovine tuberculosis study by Caley and Hone (Sect. 3.8) is interesting 
in many ways. For example, they collected data by gender (also across 
five sites) and gender was a variable in all their models. A reviewer with 
expertise in mustelids claims that gender is unimportant in disease trans-
mission and should not have been in the models (for parsimony reasons, if 
no other). Using AICc, how could you determine if the deletion of gender 
was better than models including gender? Be specific but concise.




