This chapter rapidly reviews much of classical statistics, discussing the underlying
likelihood models for procedures such as ANOVA, linear regression, and general-
ized linear models. It also gives brief pointers to the built-in procedures in R that
implement these standard techniques. This summary connects maximum likelihood
approaches with more familiar classical techniques. If you’re already familiar with
classical techniques, it may help you understood maximum likelihood better. It also
provides a starting point for using efficient, “canned” approaches when they are
appropriate for your data. It does not, and cannot, provide full coverage of all these
topics. For more details, see Dalgaard (2003), Crawley (2005, 2007), or Venables
and Ripley (2002).

9.1 Introduction

So far this book has covered maximum likelihood and Bayesian estimation in
some detail. In the course of the discussion I have sometimes mentioned that
maximum likelihood analyses give answers equivalent to those provided by famil-
iar, “old-fashioned” statistical procedures. For example, the statistical model Y ~
Normal(a 4 bx, o2)—specifying that Y is a normally distributed random variable
whose mean depends linearly on x—underlies ordinary least-squares linear regres-
sion. This chapter will briefly review special cases where our general recipe for finding
MLEs for statistical models reduces to standard procedures that are built into R and
other statistics packages.

In the best case, your data will match a classical technique like linear regression
exactly, and the answers provided by classical statistical models will agree with the
results from your likelihood model. Other models you build may be formally equiv-
alent to a classical model that is parameterized in a different way. Most often, the
customized model you build will not be exactly equivalent to any existing classical
model, but a similar classical model may be close enough that you wouldn’t mind
changing your model slightly in order to gain the convenience of using a standard
procedure.

For example, in Chapter 6 we used the model

Y ~ NegBin(u = a-DBH?, k) (9.1.1)

STANDARD STATISTICS REVISITED o 299

to represent cone production by fir trees as a function of diameter at breast height.
If we approximated the discrete distribution of cones by a continuous log-normal
distribution instead,

Y ~ LogNormal(u = a-DBH?, 02), (9.1.2)
we could log-transform both sides and fit the linear regression model
log Y ~ Normal(loga+ b -log (DBH), o'%). (9.1.3)

Figure 9.1a shows all three models for the DBH-fecundity relationship—
power-law with a negative binomial distribution (power/NB), power-law with a log-
normal distribution (power/LN), and linear with a normal distribution—fitted to the
fir data; all are plausible. Figure 9.1b shows various models for the distribution of
cone production, fitted to the individuals with DBH between 6 and 8 cm: a nonpara-
metric density estimate, the negative binomial, lognormal, and normal. The negative
binomial is closest to the nonparametric density estimate of the distribution, while the
lognormal is more peaked and the normal distribution has an unrealistic negative tail.

Although the power-law/negative binomial is the most realistic model and has
a plausible mechanistic interpretation (the data are discrete, positive, and overdis-
persed; we can imagine individual trees producing cones at an approximately constant
rate with variation in fecundity among trees), the difference between the fit of neg-
ative binomial and lognormal distributions is small enough that the convenience of
linear regression may be worthwhile. When the results of different models are simi-
lar on both biological and statistical grounds, you choose among them by balancing
convenience, mechanistic arguments, and convention.

Why might you want to use standard, special-case procedures rather than the
general MLE approach?

o Computational speed and stability: The special-case procedures use special-
case optimization algorithms that are faster (sometimes much faster) and less
likely to encounter numerical problems. Many of these procedures relieve you
of the responsibility of choosing starting parameters.

e Stable definitions: The definitions of standard models have often been chosen
to simplify parameter estimation. For example, to model a relatively sudden
change between two states you could choose between a logistic equation and a
threshold model. Both might be equally sensible in terms of the biology, but the
logistic equation is easier to fit because it involves smoother changes as param-
eters change. Similarly, generalized linear models such as logistic or Poisson
regression fit parameters on scales (logit- or log-transformed, respectively) that
allow unconstrained optimization.

o Convention: If you use a standard method, you can just say (e.g.) “we used
linear regression” in your Methods section and no one will think twice. If
you use a nonstandard method, you need to explain the method carefully and
overcome readers’ distrust of “fancy” statistics—even if your model is actually
simpler and more appropriate than any standard model. Similarly, it may
minimize confusion to use the same models, and the same parameterizations,
as previous studies of your system.

o Varying models and comparing hypotheses: The machinery built into R and
other packages makes it easy to compare a variety of models. For example,

30 « CHAPTER 9

a b
0.04 _ 6<DBH<8
200
100 - - — — density
0.03 . —— NB
50 e LN
3 204 - — - normal
g
3 10
5| — power/LN
© _ _ power/NB
2 oo - - lin/normal
14 00
T T T
5 10 15
DBH cones+1

Figure 9.1 Comparing different functional forms for fir fecundity data: power-law with a
lognormal (LN) distribution, power-law with a negative binomial (NB) distribution, and linear
with a normal distribution. (The linear model appears as a curved line because the data are
plotted on a log-log scale.)

when analyzing a factorial growth experiment that manipulates nitrogen (N)
and phosphorus (P), you can easily switch between models incorporating the
effects of nitrogen only (growthN), phosphorus only (growth~P), additive
effects of N and P (growth~N+P), and the main effects plus interactions between
nitrogen and phosphorus (growth™N+P). You can carry out all of these compar-
isons by hand with your own models, and m1e2’s formula interface is helpful,
but R’s built-in functions make the process easy for classical models.

This chapter discusses how a variety of different kinds of models fit together,
and how they all represent special cases of a general likelihood framework.
Figure 9.2 shows how many of these areas are connected. The chapter also gives
brief descriptions of how to use them in R; if you want more details on any of these
approaches, you’ll need to check an introductory (Dalgaard, 2003; Crawley, 2005;
Verzani, 2005), intermediate (Crawley, 2002), or advanced (Chambers and Hastie
1992; Venables and Ripley, 2002) reference.

9.2 General Linear Models

General linear models include linear regression, one-way and multiway analysis of
variance (ANOVA), and analysis of covariance (ANCOVA); R uses the function 1m
for all of these procedures. SAS implements this with PROC GLM.* While regression,
ANOVA, and ANCOVA are often handled differently, and they are usually taught
differently in introductory statistics classes, they are all variants of the same basic
model. The assumptions of the general linear model are that all observed values
are independent and normally distributed with a constant variance (homoscedastic),

* This terminology is unfortunate since the rest of the world uses “GLM” to mean generalized linear
models, which correspond to SAS’s PROC GENMOD.

STANDARD STATISTICS REVISITED o 301

Li\r;\(jagw‘agression GENERAL correlation §
analysis of covariance, LINEAR MODELS ' repeated—-measures

multiple linear regression \models; time-series (ARIMA)
. R . nonlinearity
nonlinearity random 1
)

(non—normal errors effects *MIXED MODELS

(nonlinearity) Iy
A\

NONLINEAR < correlation
LEAST-SQUARES
L)
(non—-normal ‘.
L . errors) '
logistic regression \, GENERALIZED (nonlinearity) s
binomial regression 2| INEAR MODELS random " 4 NONLINEAR
log-linear model randorh effects s TIME SERIES
. over- effects ,' IE
smooth scaled dispersion - 7 MODELS
nonlinearity variance eT T alm -

+' GENERALIZED LINEAR
GENERALIZED QUASILIKELIHOOD NegATIVE'~, | MIXED MODELS

ADDITIVE MODELS giNOMIAL MODELS",
MODELS ‘1 thresholds;
M mixtures;
1 compound distributions

efc. etc

Figure 9.2 All (or most) of statistics. The labels in parentheses (non-normal errors and nonlin-
earity) imply restricted cases: (non-normal errors) means exponential family (e.g., binomial or
Poisson) distributions, while (nonlinearity) means nonlinearities with an invertible linearizing
transformation. Models to the right of the gray dashed line involve multiple levels or types of
variability; see Chapter 10.

and that any continuous predictor variables (covariates) are measured without error.
(Remember that the assumption of normality applies to the variation around the
expected value—the residuals—not to the whole data set.)

The “linear” part of “general linear model” means that the models are lin-
ear functions of the parameters, not necessarily of the independent variables. For
example, quadratic regression

Y ~ Normal(a + bx + cx?,0?%) (9.2.1)

is still linear in the parameters (a, b, c), and thus is a form of multiple linear regres-
sion. Another way to think about this is to say that x? is just another explanatory
variable—if you called it w instead, it would be clear that this model is an example of
multivariate linear regression. On the other hand, Y ~ Normal(ax?, o2) is nonlinear:
it is linear with respect to a (the second derivative of ax? with respect to a is zero)
but nonlinear with respect to b (d%(ax?)/db*> = b-(b—1) caxt=2 £0).

9.2.1 Simple Linear Regression

Simple, or ordinary, linear regression predicts y as a function of a single continuous
covariate x. The model is

Y ~ Normal(a + bx, o). (9.2.2)

302 « CHAPTER 9

The equivalent R code is
> Im.reg = Im(y = x)

The intercept term a is implicit in the R model. If you want to force the intercept to
be equal to zero, fitting the model y ~ Normal(bx, o2), use 1m(y~x-1).

Typing 1m.reg by itself prints only the formula and the estimates of the coef-
ficients; summary (1m.reg) also gives summary statistics (range and quartiles) of the
residuals, standard errors and p-values for the coefficients, and R? and F statistics
for the full model; coef (1m.reg) gives the coefficients alone, and coef (summary
(1m.reg)) pulls out the table of estimates, standard errors, ¢ statistics, and p-values.
confint (1m.reg) calculates confidence intervals. The function plot(1lm.reg) dis-
plays various graphical diagnostics that show how well the assumptions of the model
fit and whether particular points have a strong effect on the results; see ?plot.1m for
details. anova(1m.reg) prints an ANOVA table for the model.*If you need to extract
numeric values of, e.g., R? values or F statistics for further analysis, wade through
the output of str(summary(lm.reg)) to find the pieces you need (e.g., summary
(1m.reg)$r.squared).

To do linear regression by brute force with m1e2, you could write this negative
log-likelihood function:

> linregfun = function(a, b, sigma) {
+ Y.pred = a + b * x
+
+

-sum(dnorm(Y, mean = Y.pred, sd sigma, log = TRUE))

}

or use the formula interface:

> mle2(Y ~ dnorm(mean = a + b * x, sd sigma), start = ...)

When using m1e2 you must explicitly fit a standard deviation term o, which is implicit
in the 1m approach.

9.2.2 Multiple Linear Regression

It’s easy to extend the simple linear regression model to multiple continuous predictor

variables (covariates). If the extra covariates are powers of the original variable
2 .3
(

x2,x3,...), the model is called polynomial regression (quadratic if just the x* term
is added):
Y ~ Normal(a + b1x + byx?, 62). (9.2.3)
Or you can use completely separate variables (x1,x2,...):
Y ~ Normal(a + b1x1 + byxs + bzx3,0?) (9.2.4)

As with simple regression, the intercept a and the coefficients of the different
covariates (b1, by) are implicit in the R formula:

> Im.poly = Im(y ~ x + I(x72))

* anova gives so-called sequential sums of squares, which SAS calls “type I” sums of squares. If you
need SAS-style “type III” sums of squares, you can use the Anova function in the car package. However,
be aware that type III sums of squares are problematic, and indeed controversial (Venables, 1998).

STANDARD STATISTICS REVISITED o 303

(surround x~2 and other powers of x with I(), meaning “as is”) or
> Im.mreg = Im(y ~ x1 + x2 + x3)

You can add interactions among covariates, testing whether the slope with
respect to one covariate changes linearly as a function of another covariate—e.g.,
Y ~ Normal(a + b1x1 + b2x2 + b12x1%2,02); in R, 1m. intreg = 1m(y~x1*x2).

Use the anova function with test="Chisq" to perform Likelihood Ratio tests
on a nested series of multivariate linear regression models (e.g., anova(lmi,1m2,
1m3,test="Chisq")). If you wonder why anova is a test for regression models,
remember that regression and analyses of variance are just different subsets of the
general linear model.

While multivariate regression is conceptually simple, models with many terms
(e.g., models with many covariates or with multiway interactions) can be difficult to
interpret. Blind fitting of models with many covariates can get you in trouble (Whit-
tingham et al., 2006). If you absolutely must go on this kind of fishing expedition,
you can use step, or stepAIC in the MASS package, to do stepwise modeling, or
regsubsets in the leaps package to search for the best model.

9.2.3 One-Way Analysis of Variance (ANOVA)

If the predictor variables are discrete (factors) rather than continuous (covariate), the
general linear model becomes an analysis of variance. The basic model is

Y; ~ Normal(a;, 02); (9.2.5)
inRitis
> Im.1lway = 1lm(y = £)

where £ is a factor. If your original data set has names for the factor levels (e.g.,
{N,S,E,W} or {high,low}), then R will automatically transform the treatment vari-
able into a factor when it reads in the data. However, if the factor levels look like
numbers to R (e.g., you have site designations 101, 227, and 359, or experiments
numbered 1 to 5), R will interpret them as continuous rather than discrete predictors
and will fit a linear regression rather than doing an ANOVA—not what you want.
Use v=factor (v) to turn a numeric variable v into a factor, and then fit the linear
model.

Executing anova (1m. 1way) produces a basic ANOVA table; summary (1m. 1way)
gives a different view of the model, testing the significance of each parameter against
the null hypothesis that it equals 0.

When fitting regression models, the parameters of the model are easy to
interpret—they’re just the intercept and the slopes with respect to the covariates.
When you have factors in the model, however—as in ANOVA—the parameterization
becomes trickier. By default, R parameterizes the model in terms of the differences
between the first group and subsequent groups (treatment contrasts) rather than in
terms of the mean of each group, although you can tell it to fit the means of each
group by putting a -1 in the formula (e.g., Im.1way = 1m(y~f-1)).

34 « CHAPTER 9

9.2.4 Multiway ANOVA

Multiway ANOVA models Y as a function of two or more different categori-
cal variables (factors). For example, the full model for two-way ANOVA with
interactions is

Y;; ~ Normal(e; + Bj + vij, o?) (9.2.6)

where i is the level of the first treatment/group, and j is the level of the second. The
R code using 1m is

> Im.2way = Im(Y ~ £f1 * £2)

(f1 and £2 are factors). As before, summary(1m.2way) gives more information,
testing whether the parameters differ significantly from zero; confint(1m.2way)
computes confidence intervals; anova (1m.2way) generates a standard ANOVA table;
plot(1m.2way) shows diagnostic plots. If you want to fit just the main effects with-
out the interactions, use Im (Y~ f1+£2); use £1:£2 to specify an interaction between
f1 and £2.

A negative log-likelihood function for mle2 could look like this:

> aov2fun = function(mll, ml2, m21, m22, sigma) {

+ intval = interaction(fl, f2)

+ Y.pred = c(mll, ml2, m21, m22) [intvall]

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))
4

(interaction(f1,f2) defines a factor representing the interaction of £1 and £2 with
levels in the order (1.1, 2.1, 1.2, 2.2)). Using the formula interface:

> mle2(Y ~ dnorm(mean = m, sd = sigma),
+ parameters = list(m ~ f1 * f2))

For a multiway model, R’s parameters are again defined in terms of contrasts. If
you construct a two-way ANOVA with factors £1 (with levels A and B) and £2 (with
levels I and I1I), the first (“intercept”) parameter will be the mean of individuals in
level A of the first factor and level I of the second (m11); the second parameter is the
difference between A,II and A,I (m12-m11); the third is the difference between B, I
and A,I (m21-m11); and the fourth, the interaction term, is the difference between
the mean of B,II and its expectation if the effects of the two factors were additive
(m22-(m11+(m12-m11)+(m21-m11)) = m22-m12-m21+m11).

9.2.5 Analysis of Covariance (ANCOVA)

Analysis of covariance defines a statistical model that allows for different intercepts
and slopes with respect to a covariate x in different groups:

Y; ~ Normal(a; + Bix, %) (9.2.7)
In R:

> Im(Y ~ £ * x)

STANDARD STATISTICS REVISITED e 305

log(cones+1)

1 DA —E&— nonwave
A A _A- wave
0— A oD 0 00
1!5 2!0 2!5
log(DBH)

Figure 9.3 General linear model fit to fir fecundity data (analysis of covariance):
1m(1og (TOTCONES+1) “1og (DBH) +WAVE_NON,data=firdata). (Lines are practically indistin-
guishable between groups.)

where f is a factor and x is a covariate (the formula Y~f+x would specify parallel
slopes, Y~f would specify zero slopes but different intercepts, Y~x would spec-
ify a single line). Figure 9.3 shows the fit of the model 1m(1og(TOTCONES+1)~
log(DBH)+WAVE_NON) to the fir data. As suggested by the figure, there is a strong
effect of DBH but no significant effect of population (wave vs. nonwave).

As with other models, use summary, confint, plot, and anova to analyze the
model. The parameters are now the intercept of the first factor level; the slope with
respect to x for the first factor level; the differences in the intercepts for each factor
level other than the first; and the differences in the slopes for each factor level other
than the first.

A negative log-likelihood function for ANCOVA:

> ancovafun = function(il, 12, slopel, slope2, sigma) {

+ int = ¢(il, i2)[f]

+ slope = c(slopel, slope2) [f]

+ Y.pred = int + slope * x

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))
+

}

36 « CHAPTER 9

9.2.6 More Complex General Linear Models

You can add factors (grouping variables) and interactions between factors in different
ways to make multiway ANOVA, covariates (continuous independent variables) to
make multiple linear regression, and combinations to make different kinds of analysis
of covariance. R will automatically interpret formulas based on whether variables
are factors or numeric variables.

9.3 Nonlinearity: Nonlinear Least Squares

Nonlinear least-squares models relax the requirement of linearity but keep the
requirements of independence and normal errors. Two common examples are the
power-law model with normal errors

Y~ Normal(axb, o?) (9.3.1)
and the Ricker model with normal errors
Y ~ Normal(axe™™,o2). (9.3.2)

Before computers were ubiquitous, the only practical way to solve these prob-
lems was to linearize them by finding a transformation of the parameters (e.g.,
log-transforming x and y to do power-law regression). A lot of ingenuity went into
developing transformation methods to linearize common functions. However, trans-
forming variables changes the distribution of the error as well as the shape of the
dependence of y on x. Ideally we’d like to find a transformation that simultaneously
produces a linear relationship and makes the errors normally distributed with con-
stant variance, but these goals are often incompatible. If the errors are normal with
constant variance, they won’t be after you transform the data to linearize f(x).

The modern way to solve these problems without distorting the error struc-
ture, or to solve other models that cannot be linearized by transforming them, is to
minimize the sums of squares (equivalent to minimizing the negative log-likelihood)
computationally, using quasi-Newton methods similar to those built into optim.
Restricting the variance model to normally distributed errors with constant variance
allows the use of specific numeric methods that are more powerful and stable than
the generalized algorithms that optim uses.

In R, use the nls command, specifying a nonlinear formula and the starting
values (as a list); e.g., for the power model

>nl = nls(y ~ a * x"b, start = list(a =1, b = 1))

As usual, summary(n1) shows values of parameters and standard errors; anova
(n1,...) does likelihood ratio tests for nested sequences of nonlinear fits; and
confint(nl) computes profile confidence limits which are more accurate than the
confidence limits suggested by summary(n1). (Unfortunately, plot(n1) does noth-
ing.) Figure 9.4 shows the fit of a nonlinear least-squares model (n1s(TOTCONES™
a*xDBH"b)) to the fir fecundity data set, along with the log-log fit (equivalent to a
power-law fit with lognormal errors) calculated above. The power-lognormal model

STANDARD STATISTICS REVISITED e 307

300 — O
power/normal

250 — — — — power/LN

200

150 —

Cones

100

50

DBH

Figure 9.4 A nonlinear least-squares fit to the fir fecundity data (nls(TOTCONES~a%*
DBHD,...)); the linear model fit to the log-log data (equivalent to a power-law fit with
lognormal errors) is also shown.

is better from a biological point of view, since the normal distribution allows negative
values, but both models are reasonable.

Fitting models with both nonlinear covariates and categorical variables (the non-
linear analogue of ANCOVA—e.g., fitting different @ and b parameters for wave and
nonwave populations) is more difficult, but two functions from the nlme package,
nlsList and gnls (generalized nonlinear least squares), can handle such models.
nlsList does completely separate fits for separate groups—for example,

> nlsList (TOTCONES ~ a * DBH'b | WAVE_NON, data = firdata,
+ start = list(a = 0.1, b = 2.7))

would fit separate a and b parameters for wave and nonwave populations—all param-
eters will vary among groups. The gnls command can fit models with only a subset
of the parameters differing among groups—for example,

> gnls(TOTCONES ~ a * DBH"b, data = firdata, start = c(0.1,
+ 2.7, 2.7), params = list(a ~ 1, b ~ WAVE_NON))

will fit different b parameters but the same 4 parameter for wave and nonwave
populations.

The numerical methods that nls uses are similar to mle2’s in that (1) you must
specify starting values and (2) if the starting values are unrealistic, or if the problem
is otherwise difficult, the numerical optimization may get stuck. Errors such as

step factor [] reduced below ’minFactor’ of

38 ¢« CHAPTER 9

number of iterations exceeded maximum of ...
or
Missing value or an infinity produced when evaluating the model

indicate numerical problems. To solve these problems try to find better starting
conditions, reparameterize your model, or adjust the control options of nls (see
?nls.control).

As with ML models, you can often use simpler, more robust approaches like lin-
ear models to get a first estimate for the parameters (e.g., estimate the initial slope of
a Michaelis-Menten function from the first 10% of the data and the asymptote from
the last 10%, or estimate the parameters by linear regression based on a linearizing
transformation). R includes some “self-starting” functions that do these steps auto-
matically. The functions SSlogis and SSmicmen, for example, provide self-starting
logistic and Michaelis-Menten functions. To fit a self-starting Michaelis-Menten
model to the tadpole data with asymptote a and half-maximum b:

> data (ReedfrogFuncresp)
> nls(Killed ~ SSmicmen (Initial, a, b),
+ data = ReedfrogFuncresp)

Use apropos("SS", ignore. case=FALSE) to see a more complete list of self-starting
models. The names are cryptic, so check the help system for information about each
model.

Further reading: Bates and Watts (1988), Pinheiro and Bates (2000).

- 9.4 Nonnormal Errors; Generalized Linear Models

Generalized linear models (not to be confused with general linear models) allow you
to analyze models that have a particular kind of nonlinearity and particular kinds of
nonnormally distributed (but still independent) errors.

Generalized linear models can fit any nonlinear relationship that has a linearizing
transformation. That is, if y = f(x), there must be some function F such that F(f(x))
is a linear function of x. The procedure for fitting generalized linear models uses the
function F to fit the data on the linearized scale (F(y) = F(f (x))) while calculating the
expected variance on the untransformed scale in order to correct for the distortions
that linearization would otherwise induce. In generalized-linear-model jargon F is
called the link function. For example, when f is the logistic curve (y = f(x) = /(1 +
e*)), the link function F is a the logit function (F(y) =log(y/(1—1y)) = x; see p. 83 for
the proof that the logit is really the inverse of the logistic). R knows about a variety
of link functions including the log (x = log (y), which linearizes y = €%); square root
(x = /¥, which linearizes y = x2); and inverse (x = 1 /v, which linearizes y = 1/x):
see 7family for more possibilities.

The class of nonnormal errors that generalized linear models can handle is called
the exponential family. It includes Poisson, binomial, Gamma and normal distribu-
tions, but not negative binomial or beta-binomial distributions. Fach distribution has
a standard link function: the log link is standard for a Poisson, a logit link is standard

STANDARD STATISTICS REVISITED e 309

for a binomial distribution, etc. The standard link functions make sense for typical
applications. For example, the logit transformation converts unconstrained values
into values between 0 and 1, which are appropriate as probabilities in a binomial
model. However, R does allow you some flexibility to change these associations for
specific problems.

GLMs are fit by a process called iteratively reweighted least squares, which over-
comes the basic problem that transforming the data to make them linear also changes
the variance. The key is that given an estimate of the regression parameters, and
knowing the relationship between the variance and the mean for a particular distri-
bution, one can calculate the variance associated with each point. With this variance
estimate, one reestimates the regression parameters weighting each data point by the
inverse of its variance; the new estimate gives new estimates of the variance; and so
on. This procedure quickly and reliably fits the models, without the user needing to
specify starting points.

Generalized linear models combine a range of nonnormal error distributions with
the ability to work with some reasonable nonlinear functions. They also use the same
simple model specification framework as 1m, allowing us to explore combinations
of factors, covariates, and interactions among variables. GLMs include logistic and
binomial regression and log-linear models. They use terminology that should now be
familiar to you; they estimate log-likelihoods and test the differences between models
using the LRT.

The glm function implements generalized linear models in R. By far the two most
common GLMs are Poisson regression, for count data, and logistic regression, for
survival/failure data.

e Poisson regression: log link, Poisson error (Y ~ Poisson(ae?™)):
> glml = glm(y ~ x, family = "poisson")
The equivalent likelihood function is

> poisregfun = function(a, b) {

+ Y.pred = exp(a + b * x)
+ -sum(dpois(y, lambda = Y.pred, log = TRUE))
+ }

e Logistic regression: logit link, binomial error (Y ~ Binom(p = exp (a + bx)/
(1+exp(a+ bx)),N)):

> glm2 = glm(cbind(y, N - y) ~ x, family = "binomial")
or

> Jlogistregfun = function(a, b) {

+ p.pred = exp(a + b * x)/(1 + exp(a + b * x))
+ -sum(dbinom(y, size = N, prob = p.pred, log =
+ TRUE))

+ }

(You could also say p.pred=plogis (a+b*x) in the first line of logistregfun.)

GLMs can also fit models of exponentially decreasing survival, Y ~ Binom
(p = exp (a+ bx), N). Strong et al. (1999) modeled the survival probability of ghost

TICTONSMNIS G s A s e e e

310 « CHAPTER 9

O

logistic regression

64 0O

— — — log-binomial model

Fraction killed

0.1 - O
| I 1 T T
20 40 60 80 100

Initial density-

Figure 9.5 Logistic (binomial) regression and log-binomial regression of fraction of tadpoles
killed as a function of tadpole density. Logistic regression:
glm(cbind(Killed,Initial—Killed)”Initial, family="binomial",
data=ReedfrogFuncresp)

Log-binomial regression: glm(. . . »family=binomial (1ink="1log"),...)

moth caterpillars as a decreasing function of density (and as a function of the pres-
ence or absence of entomopathogenic nematodes); Tiwari et al. (2006) modeled the
probability that nesting sea turtles would #o# dig up an existing nest as a decreasing
function of nest density. You can fit such a model this way:

> glm3 = glm(cbhbind(y, N - Y) T x, family = binomial (link =
4 Illogll))

Use family=binomial(link="log") instead of family="binomial" to specify
the log instead of the logit link function. The equivalent negative log-likelihood
function is

> logregfun = function(a, b) {

+ p.pred = exp(a + b * x)
+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))
+ }

You can use either a logistic or a log-binomial model to fit Vonesh’s tadpole
mortality data (Figure 9.5), but the fact that expected survival decreases exponentially
at high densities in both models causes problems of interpretation. If the probability

STANDARD STATISTICS REVISITED o 311

of survival declines exponentially with density—which is true for the log-binomial
model and approximately true at high densities for the logistic—then the expected
number surviving is p(x) - x = e~@tb%)x = cxe=b*_ This is a Ricker function, which
decreases to zero at high density rather than reaching an asymptote. In predator-
prey systems for example, rather than this overcompensation response to density, we
usually expect compensatory behavior—predation rate reaching an asymptote—the
standard type II functional response model uses p(x) = A/(1 + Abx), which has a
weaker dependence on x, and which makes the limit of p(x)x as x becomes large
equal to 1/h. The GLM, while convenient, may not be ecologically appropriate in
this case.

After you fit a GLM, you can use the same generic set of modeling functions—
summary, coef, confint, anova, and plot—to examine the parameters, test
hypotheses, and plot residuals. anova(glm1,glm2, .. .) does an analysis of deviance
(Likelihood Ratio tests) on a nested sequence of models. As with 1m, the default
parameters represent (1) the intercept (the baseline value of the first treatment),
(2) differences in the intercept between the first and subsequent treatments, (3) the
slope(s) with respect to the covariate(s) for the first group, or (4) differences in
the slope between the first and subsequent treatments. However, all of the parameters
are given on the scale of the link function (e.g., log scale for Poisson models, logit
scale for binomial models). To interpret them, you need to transform them with the
inverse link function (exponential for Poisson, logistic (=plogis) for binomial). For
example, the coefficients of the logistic regression shown in Figure 9.5 are intercept
= —0.095, slope = —0.0084. To find the probability of mortality at a tadpole density
of 60, calculate exp (—0.095 + —0.0084 - 60)/(1 +exp (—0.095 +—0.0084 - 60) =
0.355.

Further reading: McCullagh and Nelder (1989); Dobson (1990); Hastie and
Pregibon (1991); Lindsay (1997). R-specific: Crawley (2002); Faraway (2006).

9.4.1 Models for Overdispersion

To go beyond the exponential family of distributions (normal, binomial, Poisson,
Gamma) you may well need to roll your own ML estimator. R has two built-in
possibilities for the very common case of discrete data with overdispersion, i.e., more
variance than would be expected from the standard (Poisson and binomial) models
for discrete data.

9.4.1.1 QUASI LIKELIHOOD

Quasi-likelihood models “inflate” the expected variance of models to account for
overdispersion (McCullagh and Nelder, 1989). For example, the expected variance
of a binomial distribution with N samples and probability p is Np(1 — p). The guasi-
binomial model adds another parameter, ¢, which inflates the variance to ¢Np(1 —
p). The overdispersion parameter ¢ (Burnham and Anderson (2004) call it ¢) is
generally greater than 1—we usually find more variance than expected, rather than
less. Quasi-Poisson models are defined similarly, with variance equal to ¢A. This
approach is called guasi likelihood because we don’t specify a real likelihood model

312 ¢« CHAPTER 9

with a probability distribution for the data. We just specify the relationship between
the mean and the variance. Nevertheless, the quasi-likelihood approach works well
in practice. R uses the family function to specify quasi-likelihood models.

Because the quasi likelihood is not a true likelihood, we cannot use Likelihood
Ratio tests or other likelihood-based methods for inference, but the parameter esti-
mates and ¢ statistics generated by summary should still work. However, various
researchers have suggested that using an F test based on the ratio of deviances
is appropriate: use anova(...,test="F") (Crawley, 2002; Venables and Ripley,
2002). Burnham and Anderson (2004) suggest using differences in “quasi-AIC”
(QAIC) in this case, where the AGAIC uses the difference in deviance divided by
the estimate of ¢.

Since the log is the default link function for the quasipoisson family, you can
fit a quasi-Poisson log-log model for fecundity as follows:

> glm(TOTCONES ~ log(DBH), data = firdata, family =
+ "quasipoisson")

9.4.1.2 NEGATIVE BINOMIAL MODELS

Although the exponential family does not strictly include the negative binomial dis-
tribution, negative binomial models can be fit by a small extension of the GLM
approach, iteratively fitting the k (overdispersion) parameter and then fitting the rest
of the model with a fixed £ parameter. The glm.nb function in the MASS package
fits linear negative binomial models, although they restrict the model to a single k
parameter for all groups. (Use $theta to extract the estimate of the negative binomial
k parameter from a negative binomial model.)

Because we can use a log link (which is glm.nb’s default link), we can exactly
replicate our original log-likelihood model (cones ~ NegBin(a - DBH?, k)) with the
following command:

> glm.nb(TOTCONES ~ log(DBH), data = firdata)

The only difference from our earlier model is that the estimated intercept parameter
is log (a) rather than a.

95 R Supplement

Here’s how to fit various linear models to the log-transformed fir data. Since the
data (TOTCONES) contain some zero values, taking logarithms would give us negative
infinite values. We need either to drop these values (subset=TOTCONES>0) or to add
an offset of 1, in order to avoid infinities. However, since there are few zeros in the
data (sum(firdata$TOTCONES==0) is 10 out of a total of 242 data points) and the
mean number of cones is large, this adjustment shouldn’t affect the results much. If
zeros are frequent so that such an adjustment would affect your results significantly,
or if the results vary depending on how large an offset you add, consider a different
model (Section 9.4).

STANDARD STATISTICS REVISITED o 313

> logcones = log(firdata$TOTCONES + 1)

> Im.0 Im(logcones ~ 1, data = firdata)

> Im.d Im(logcones ~ log(DBH), data = firdata)

> Im.w = Im(logcones ~ WAVE_NON, data = firdata)

> Im.dw = 1Im (logcones ~ log (DBH) + WAVE_NON, data = firdata)
> Im.dwi = Im(logcones ~ log (DBH) * WAVE_NON,

+ data = firdata)

Since 1og(DBH) is a covariate and WAVE_NON is a factor, 1m.d is a regression; 1m.w
is a one-way ANOVA; and 1m.dv and 1m. dwi are ANCOVA models with parallel
and nonparallel slopes, respectively.

A few different ways to analyze the data:

> anova(lm.0, Im.d, Im.dw, Im.dwi)
Analysis of Variance Table

Model 1: logcones ~ 1

Model 2: logcones ~ log(DBH)

Model 3: logcones ~ log(DBH) + WAVE_NON
Model 4: logcones ~ log(DBH) * WAVE_NON

Res.Df RSS Df Sum of Sq F Pr(>F)
1 241 384.53
2 240 250.33 1 134.20 127.7512 <2e-16 *xx
3 239 250.29 1 0.04 0.0393 0.8431
4 238 250.02 1 0.27 0.2535 0.6151
Signif. codes: 0 ‘*xx’ (0.001 “#x*’ 0.01 “*? 0.05 “.7> 0.1 ¢ » 1

> AIC(1Im.0, I1m.d, Im.w, Im.dw, Im.dwi)

df AIC
Im.0O 2 802.8349
Im.d 3 700.9556
Im.w 3 786.5281
Im.dw 4 702.9157
Im.dwi 5 704.6580

(Ileft 1m.w out of the anova statement because it and 1m.d cannot be nested.) anova
compares the models sequentially, while AIC compares them simultaneously. AICtab
in the emdbook package offers several more options such as sorting the table in order
of increasing AIC or computing AIC weights. Try coef, summary, and confint on
these models as well.

The full ANCOVA model fit via m1e2:

> ancovafun = function(il, 12, slopel, slope2, sigma) {
+ int = ¢(i1, 1i2) [WAVE_NON]

+ slope = c(slopel, slope2) [WAVE_NON]

+ Y.pred = int + slope * log (DBH)

+ -sum(dnorm(logcones, mean = Y.pred, sd = sigma,

314 ¢ CHAPTER 9

+ log = TRUE))

+ }

> ml = mle2(ancovafun, start = list(il = -2, i2 = -2,
+ slopel = 2.5, slope2 = 2.5, sigma = 1),

+ data = firdata)

> AIC(ml)

[1] 704.658

The maximum likelihood fit gives the same AIC as the 1m fit. You can’t always
take this equality for granted, since different models that are formally equivalent
may include different constants in the likelihood, and different functions may count
the number of parameters differently. This is especially true when comparing results
from different statistics packages.

As pointed out in the text, the models are parameterized differently:

> coef (1lm.dwi)

(Intercept) log(DBH) WAVE_NONw log(DBH) : WAVE_NONw
-2.3871702 2.7303449 0.5162954 -0.2630837

> coef (ml)

il i2 slopel slope2 sigma
-2.387134 -1.870762 2.730329 2.467205 1.016441

You can check that the answers are equivalent; for example, the slope of the wave
population is slope2 = 2.467 = 1log(DBH) + log(DBH) : WAVE_NONw.

To do the full model comparison with mle2, you have to construct a series of
nested models (analogous to 1m.dw, 1m.d, 1m.w, 1m.0). This is a bit tedious—one
reason for using built-in functions where possible. You may want to read about
the model.matrix function, which can simplify model construction. model .matrix
uses a user-specified formula to construct a design matrix that, when multiplied by
a vector of parameters, gives the expected value of each data point. By default the
design matrix uses parameters that represent baseline levels and differences among
groups, as in 1m and glm. mle2’s formula interface uses model.matrix internally, so

that (e.g.) you can easily fit the full ANCOVA model by specifying

> mle2(log (TOTCONES + 1) ~ dnorm(i + slope*log(DBH), sd),
> parameters = list(i ~ WAVE_NON, slope ~ WAVE_NON),
+ data = firdata, start = ...)

STANDARD STATISTICS REVISITED e 315

Congratulations

You have now finished the first part of the book, which covers all the important basic
tools. You know everything you need to know to fit reasonably complex, realistic
ecological models to you data. :

X Warning

Models with multiple levels of variability and dynamical models, the subjects of the
last two chapters, are much harder to create and fit from scratch. Powerful and
specialized statistical methods that have been developed to handle these problems
are beginning to make their way into ecology. The second part of the book will give
a brief overview of these topics, but to use them in any serious way you will have to
go to a specialized reference such as Gelman and Hill (2006) or Clark (2007) to learn
more. The good news is that the concepts and terminology you have now learned
should speed up the learning process considerably.)

If your brain is full after the first part of the book, stop here. If you are eager
for more, read on. If you are already swamped but desperately need to incorporate
multiple levels of variability in your analysis, see Section 10.4.3 for ways of avoiding
multilevel models. If you are swamped but must do something to estimate parameters
for a dynamic model, see Section 11.4.

