Hilboin,
Ptk

0ond M Mo ie Ecdocd e b,
Col ; :

& !’VYOA.Qlk W\\'\\ Jo-\'c i Q/\r\cq,‘\'\)-\ Un\\)dl&‘lf\‘l pft&\'
NN

CHAPTER ONE

An Ecological Scenario and the
Tools of the Ecological Detective

AN ECOLOGICAL SCENARIO

The Mediterranean fruit fly (medfly), Ceratitis capitata
(Wiedemann), is one of the most destructive agricultural
pests in the world, causing millions of dollars of damage
each year. In California, climatic and host conditions are
right for establishment of the medfly; this causes consider-
able concern. In Southern California, populations of medfly
have shown sporadic outbreaks (evidenced by trap catch)
over the last two decades (Figure 1.1). Until 1991, the ac-
cepted view was that each outbreak of the medfly corre-
sponded to a “new” invasion, started by somebody acciden-
tally bringing flies into the state (presumably with rotten
fruit). In 1991, our colleague James Carey challenged this
view (Carey 1991) and proposed two possible models con-
cerning medfly outbreaks (Figure 1.2). The first model, M;,
corresponds to the accepted view: each outbreak of medfly
is caused by a new colonization event. After successful colo-
nization, the population grows until it exceeds the detection
level and an “invasion” is recorded and eradicated. The sec-
ond model, My, is based on the assumption that the medfly
has established itself in California at one or more suitable
sites, but that, in general, conditions cause the population
to remain below the level for detection. On occasion, how-
ever, conditions change and the population begins to grow
in time and spread over space until detection occurs. Carey
argued that the temporal and spatial distributions of trap
catch indicate that the medfly may be permanently estab-
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FIGURE 1.2. The outbreak of medfly can ke described by two different
methods. In model 1, we assume that there is continual reintroduction of

_ the pest. After a reintroduction, the population grows until it exceeds the

detection level. In model 2, we assume that the medfly is established, but
that ecological conditions are only occasionally suitable for it to grow and
exceed the detection threshold. (Reprinted with permission from Carey
1991. Copyright Americant Association for the Advancement of Science.)

lished in the Los Angeles area. Knowing which of these
views is more correct is important from a number of per-
spectives, including the basic biology of invasions and the
implications of an established pest on agricultural practices.

Determining which model is more consistent with the
data is a problem in ecological detection. That is, if we allow
that either model M; or model M, is true, we would like to
associate probabilities, given the data, with the two models.
We shall refer to this as “the probability of the model” or
the “degree of belief in the model.” How might such a prob-
lem be solved? First, we must characterize the available data,
which are the spatial distribution of trap catches of medfly
over time (Figure 1.3). We could refine these by placing
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FiGuURE 1.3. The daita available for ecological detection in this case would
be ‘the spatial distribution of the catch of adult medfly over time. (Re-

printed with permission from Carey 1991. Copyright American Association

for the Advancement of Science.)

small . grids over the maps and chéracterizing a variable
that measures the number of flies that appear in cell i in
year y. Second, we must convert the pictorial or verbal
models shown in Figure 1.2 into mathematical descrip-
tions. That is, some kind of mathematical model is needed
so that the data can be compared with predictions of a
model. Such models would be used to predict the tempo-
ral and spatial patterns in detected outbreaks; the mathe-
matical descriptions would generate maps similar to the
figures. The models would involve at least two submodels,
one for the population dynamics and one for the detection
process. Courses in ecological modeling show how this
is done. Third, we confront the models with the data by
comparing the predicted and observed results. At least
three approaches can be broadly identified for such a
confrontation.’ ' :

Classical Hypothesis Testing.  Here we confront each model
separately with the data. Thus, we begin with hypotheses:
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TOOLS OF THE ECOLOGICAL DETECTIVE
Hy: Model M; is true
H,: Some other model is true

Here the alternate model might be that outbreaks are
random over time and space. Using the mathematical de-
scriptions of the models, we construct a “p value” for the
hypothesis that M, is tiue. It might happen that we can defi-
nitely reject Hy because the p value is so small (usually less
than 0.05 or 0.01). ternatively, we might not be able to
reject Hy (ie., p > fﬁS), but then might discover that the
power of the statistical test is quite low (we assume that most
readers are probably familiar with the terms “p values” and
“power” from courses in elementary statistics, but we shall
explain them in more detail in the following chapters). In
any case, we use such hypothesis testing because it gives the
“illusion of objectivity” (Berger and Berry 1988; Shaver
1993; Cohen 1994). : ,

After we had tested the hypothesis that model 1 is true
against the alternate hypothesis, we would test the hypoth-
esis that model 2 is true against the alternate. Some of the
outcomes of this procedure could be: (i) both models M,
and M are rejected; (ii) model M, is rejected but M, is not;
(iii) model M, is not rejected but My is; and (iv) neither
model is rejected. If outcome (ii)) or (iii) occurs, then we
will presumably act as if model M,; or M, were true and
make scientific and policy decisions on that basis, but if out-
come (i) or (iv) occurs, what are we to do? Other than col-
lecting more data, we are provided with little guidance con-
cerning how we should now view the models and what they
tell us about the world. There is also a chance that if out-
come (ii) or (iii) occurs, the result is Wrong, and then on
what basis do we choose the p level?

Likelihood Approach (Edwards 1992). In this case, we use
the data to arbitrate between the two models. That is, given
the data and a mathematical description of the two models,
we can ask, “How likely are the data, given the model?” De-
tails of how to do this are given in the rest of this book, but
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read on pretending that you indeed know how to do it.
Thus, we first construct a measure of the probability of the
observed data, given that the model is true—we shall de-
note this by Pr{dataiM;}. We then turn this on its head and
interpret it as a measure of the chance that the model is the
appropriate description of the world, given the data. This
is called the likelihood and we denote it by £.{M;ldata}.
We now compare the likelihoods of the two models, given
the data. If £,{M, ldata} > Lo{Myldata}, then we would
argue that model M, is a better description of the world;
if £,{M;ldata} < Lo{Msldata}, then we would argue
that model M, is a better description of the world; and if
&£1{M, ldata} ~ Z£o{M;ldata}, then we would argue that the
data do not differentiate between the models. A smart deci-
sion maker would not act as if the most likely model were
true, but would weigh the costs and consequences of each
action against the relative probabilities of the alternative hy-
potheses. But what exactly is meant by “>,” “<,” or “_” in
this approach?

In this book, we shall work out methods for determining
when one likelihood is much larger than another, and what
that means in terms of confronting models with data.

Bayesian Approach. F inally, we might have other informa-
tion that allows us to Judge a priori which model is more
likely to be true. For example, we might know the ecology of

marized in a “prior probability that model M; is true,” which
we denote by p. If we allow only two models of the world
(medfly are established or they reinvade), then ot op =
L. Now, given information consisting of trap catches and the
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this require an understanding of conditional probability
and are generally called “Bayesian methods,” named after
the Reverend Thomas Bayes, who introduced such ideas. In
biology and mathematics, one of the earliest modern propo-
nents was Sir Harold Jeffreys (1948), who called the method
“inverse probability.” His goal was to find methods that allow
us to combine prior information with the chance of observ-
ing the data to evaluati a posterior probability of different
hypotheses, given a scehario associated with the prior infor-
mation. Interestingly, Ithough Jeffreys is most famous for
his work in applied mathematics, astronomy, and geophysics,
he was one of the earliest contributors to the Journal of Ecology
(Sheail 1989). In this book, we shall illustrate how Bayesian
methods can be developed and applied. They are particularly
appropriate for cases in which studies cannot be replicated
(e.g., Reckhow 1990) and for assessment of the risk and
safety in various environmental settings in which “expert
opinion” is sought (Emlen 1989; Apostolakis 1990; Bolt 1991).
There are arguments that Bayesian reasoning is the only way
to provide a unified and consistent approach to deterministic
and statistical theories (Howson and Urbach 1989, 1991).

This ecological scenario illustrates three approaches that
can be taken when confronting models with data. It is our
opinion that the process of science consists of confronting
more than one description of how the world works with
data. Thus, in the rest of the book we spend little time on
classical methods of hypothesis testing but focus on likeli-
hood and Bayesian methods. Two recent special features in
the journal Ecology contain a number of papers that deal
with nonclassical approaches to the use of statistics in eco-
logical problems (Carpenter 1990; Jassby and Powell 1990;
Reckhow 1990; Walters and Holling 1990; Potvin and Roff
1993; Potvin and Travis 1993; Shaw and Mitchell-Olds 1993;
Trexler and Travis 1993) or with particularities of ecological
situations (Dutilleul 1993; Legendre 1993). They provide a
good complementary background for this book.
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CHAPTER ONE

THE TOOLS FOR ECOLOGICAL DETECTION

The modern ecologist usually works in both the field and
laboratory, uses statistics and computers, and often works
with ecological concepts that are model based, if not model
driven. How do we make the field and laboratory coherent?
How do we link models and data? How do we use statistics
to help experimentation? How do we integrate modeling
and statistics? How do we confront multiple hypotheses with
data and assign degrees of belief to different hypotheses?
How do we deal with time series (in which data are linked
from one measurement to the next) or put multiple sources
of data into one inferential framework? These are the kinds
of questions asked and answered by the ecological detective.

Like all other forms of creative activity, ecological de-

tection is a craft that requires the right tools as well as the
skills and materials to use the tools. We envision four

components.

Hypotheses are the first component. Notice the plural,
which is essential to our viewpoint. Science consists of con-
fronting different descriptions of how the world works with
data, using the data to arbitrate between the different de-
scriptions, and using the “best” description to make addi-
tional predictions or decisions. These descriptions of how
the world might work are hypotheses, and often they can be
translated into quantitative predictions via models. In Chap-
ter 2, we review different kinds of models, the purposes of
models, and how models are related to hypotheses.

Data are the second component. You cannot do good
analysis if the data are not good. But what does “good”
mean? Sometimes the role of analysis is to show that a set of
data—at least within the context of a particular view of the
world—is not as informative or as useful as one thought it
would be. In Chapter 3, we stress that it is important to
“Know Your Data” and we provide a sufficient review of
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probability and the stochastic processes that you will need to
conduct the work of the ecological detective.

Goodness of fit is the third component. When the data are
used to arbitrate between different hypotheses or models,
we must have a measure to determine how well each de-
scription of the world fits the observations. In Chapters 5, 7,
and 9, we describe a variety of measures of goodness of fit
that can be used in thie confrontation of models and data.
We provide,recommer{dations about when it is good to use
a particular method. i

Numerical proceduresfare the fourth component. Having a
measure of goodness of fit between the model and the data
is not enough—you must to be able to evaluate it quickly
and efficiently and explore the goodness of fit of other
models. Thlis, in Chapter 11, we provide an introduction to
numerical methods needed to assess goodness of fit and to
find the best fit. There is a history of the use of numerical
procedures in ecology (examples from a generation ago are
given by Conway et al. 1970, Melzer 1970, and Marten et al.
1975), but it is the development of microcomputers that
really allows the full richness of numerical procedures to be
exploited by practicing ecologists.

Overarching these components are alternative views of
the scientific method and the role of models in science,
which we discuss in Chapter 2. There we present four of the
major philosophies of science and show how two of them
are closely connected to our work of ecological detection.

A final warning. We are practicing ecologists. We are not
statisticians, numerical analysts, or philosophers, and the ap-
propriate chapters will no doubt offend the appropriate ex-
perts. For this we make no apologies other than stressing
that for the ecological detective the problem is paramount.
Because of that, we bring to the problem whatever tech-
niques—from wherever they come—needed to solve it. And
if the techniques do not exist, then we must invent them.
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