PRIMER 3

Probability Theory

Probability theory, or the mathematical description of chance events, is arguably
one of the areas of mathematics that has provided the most insight into biology.
This primer serves as a basic introduction to probability theory, providing the
background material necessary for Chapters 13-15.

P3.1 An Introduction to Probability

Before introducing the concept of probability, we must introduce the concept
of a trial. A trial can be any sort of occurrence, like the birth of a child or the
flowering of a plant. We are interested in trials that can have more than one
possible outcome. For example, a baby might be a boy or a girl. A plant might
produce any number of seeds from zero to thousands. Because more than one
outcome is possible, we can consider the outcome to be a variable, specifically
a random variable, which we denote by a capital letter (e.g., X). Once a trial has
happened, the random variable takes on a specific value. For example, if a boy
is born we could write X = “boy” if we wanted to describe the outcome in
words, or we could write X = 0 if we were counting the number of girls.

Before the trial actually occurs, we can consider quantifying the chance or
probability that a particular outcome will be realized. We denote a particular
outcome of a random variable by a lower-case letter (e.g., x). Some outcomes
will have a high chance of occurring and others will be extremely unlikely. We
can write the probability that the random variable X takes on the value x as
P(X = x) or just P(x). There are two ways to think about probabilities:

e Frequency interpretation: A probability is understood as the frequency
of a particular outcome across the course of many trials.

» Subjective interpretation: A probability is understood as a subjective belief
or opinion of the chance that a particular outcome will be realized.

For example, when a baby rhinoceros is born, you might think that there is
roughly a 50% probability that the baby is male, P(X = “male”) = 0.5. This
opinion might be based on previous observations that about half of all mam-
mals are male; this would be a frequentist’s perspective. Alternatively, your
opinion might be based on the idea that sex chromosomes should segregate
50:50 (i.e., half of all sperm should bear an X chromosome and half a Y chro-
mosome); this would be a subjectivist's perspective. Most of us think about
probabilities in both ways, depending on the situation.
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Venn Diagram  Set Language Set Notation

(a) The set Q

by e Subset 4 (or event A4) A

(c) Complement of 4 AC

@ |aD Intersection of 4 and B A~\E or AR
e |e® Union of 4 and B AU B

(H QO A and B are disjoint (mutually exclusive) AB=0

() @ A is a subset of B AcB

Figure P3.1: Venn diagrams. The probability of an outcome can be represented as an
area (shaded grey) within a Venn diagram, which is a square of area one. (a) If an outcome
is certain to occur (with probability one), the entire square is shaded. (b) If outcome A
has a probability less than one of occurring (say, p), a fraction p of the square is shaded.
(c) The complement of A represents any outcome other than A, so that a fraction 1 — p
of the square is shaded. (d) The probability that two outcomes, A and B, both occur is
given by the area of their intersection. (e) The probability that A or B or both occurs is
represented by the total area inside the shaded regions (their intersection must be
counted only once). (f) If two outcomes A and B have no intersection, then they are
mutually exclusive (they cannot both occur). (g) An outcome A is a subset of B if its area
is entirely encompassed within the area of B, in this case B will always be observed when
A occurs.

Because a probability represents the chance that a trial has a particular out-
come, any probability must lie between 0 and 1 (or, equivalently, between 0%
and 100%). An aid to visualizing probabilities is a “Venn diagram” (Figure P3.1),
which is a square whose area is one. The area of the whole square (one) repre-
sents the probability that the trial has any outcome (including, potentially,
that nothing happens). We can subdivide the square into subsets, where each
subset represents a potential outcome and the area of the subset represents the
probability of observing that outcome. For example, if your sister is pregnant,
you might think that there is a 1/7 chance that the baby will be born on any
particular day of the week, e.g., P(X = “Monday”) = 0.14. In this example, the
potential outcomes (days of the week) are “disjoint” or “mutually exclusive,”
meaning that only one of the alternative outcomes is possible—the baby cannot
be born both on a Monday and on a Tuesday. For trials with mutually exclusive
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outcomes, the Venn diagram can be partitioned into nonoverlapping subsets,
and the following rule applies:

Rule P3.1: Probabilities of Mutually Exclusive Outcomes

If a trial can result in only one of a set of possible outcomes, the
outcomes are said to be “mutually exclusive.” The probabilities
of mutually exclusive outcomes sum to one:

# of outcomes

SPX =x)=1

As a special case of Rule P3.1, one can always partition the outcomes of a trial
into one outcome of interest, A, and its complement, A“. The complement rep-
resents “not A,” and the probability of observing the complement is the proba-
bility of not observing A. For example, the baby might be born on a Monday (A)
with probability 1/7 or on any other day of the week (A“) with probability 6/7.

Rule P3.2: Complement Rule
The probability of an outcome plus the probability of its complement
sum to one:

P(X = A) + P(X = A% = 1.

This rule is easy to visualize using a Venn diagram (Figure P3.1c). Rule P3.2 is
extremely handy, because it is sometimes easier to calculate the probability of the
complement of an outcome of interest. For example, if you are monitoring the
populations of lizards on five islands and you want to know the probability that
one, two, three, four, or five of the populations goes extinct over the course of a
year, then the easiest way to calculate P(X = “one or more extinctions”) is to
calculate the complement P(X = “no extinctions”). Rule P3.2 then tells us that
P(X = “one or more extinctions”) equals one minus P(X = “no extinctions”).

The outcomes of a trial need not be mutually exclusive. For example, if you
are observing interactions between two fish in a five-minute interval, you
might observe no contact, aggressive contact, mating, or avoidance behavior,
but you might very well see more than one of these outcomes in the same
period (e.g., aggression and mating). If two outcomes are not mutually exclu-
sive, then there is some probability that both will be observed. On a Venn dia-
gram, the intersection of the two outcomes represents this probability. We can
write the probability that both A and B occur using P(X = A N B) where N is
called the intersection and represents “and” (see Figure P3.1d). Following con-
vention, we can drop the “X = “ and the “N” in such probability statements
and write P(X = A N B) as P(A B). P(A B) is read as “the probability that the ran-
dom variable X has both the outcome A and the outcome B.”
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The outcomes A and B are said to be independent if the probability of observing
both, P(A B), equals the product of each outcome’s probability, P(A) P(B). When
outcomes A and B are independent, observing A provides no information about
whether or not B will be observed. For example, imagine throwing two dice—as
long as you don’t have any tricks up your sleeve, the number showing on the first
die will have no influence on the number showing on the second die; they will be
independent events. In biology, independence is often assumed for trials involv-
ing different individuals who are separated in time and space and who have had
no contact. For example, the day of the month in which a woman in Vancouver
and a woman in New York start menstruating might reasonably be independent
of one another, but this is not true for women living in close proximity (Preti et al.
1986). Mutually exclusive outcomes are never independent because their inter-
section P(A B) is zero and not P(A) P(B); for example, a single die thrown cannot
show both a “two” and a “five” as these are mutually exclusive.

Often we are interested in knowing the probability of outcome A or B or both
(that is, A and/or B). In a Venn diagram, this probability is represented by the
total area of the subsets A and B. We write this probability as P(A U B), where U
is called the “union” and represents “and/or” (see Figure P3.1e). For example, we
might be interested in the probability that a forest patch is decimated by fire or
disease or both. To calculate the union of two subsets, we could add together the
two subsets, but then we would be counting their intersection twice. Thus, to
find the union, we must subtract the intersection from the sum of the subsets.

Rule P3.3: Inclusion-Exclusion Rule
The probability of outcome A or B or both is the sum of each out-
come’s probability minus the probability that both occur:

P(AU B) = P(A) + P(B) — P(AB).

CAUTION: It can be tempting to interpret U as “and” whereas U really represents
“and/or.” It can help to remember that U represents the total area (“union”) in a
Venn diagram. Instead, it is N that represents “and,” where N specifies the area in
a Venn diagram within which both A and B occur (their intersection).

Because the intersection is known for two independent outcomes (P(A) P(B))
and for two mutually exclusive outcomes (zero), we can calculate the probabil-
ity of A and B as well as the probability of A or B or both:

Rule P3.4: Independent Outcomes
(a) If outcomes A and B are independent, the probability of observ-
ing both outcomes is the product of observing each separately:

P(A N B) = P(A B) = P(A) P(B).
(b) Using Rule P3.3, the probability of A or B (or both) is then

P(AU B) = P(A) + P(B) — P(A) P(B).
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Rule P3.5: Mutually Exclusive Outcomes
(a) If outcomes A and B are mutually exclusive, the probability of
observing both outcomes is zero:
P(ANB) = P(AB) = 0.

(b) Using Rule P3.3, the probability of A or B (or both) is then

P(A U B) = P(A) + P(B).

These rules are fairly intuitive, in part because we have experience with games
involving these probability calculations. For example, if you take a randomly shuf-
fled deck of 52 cards, the probability that the first card you turn over is the queen
of spades is 1/52. Because 1/52 is the product of the probability of observing a
queen, P(“queen”) = (1/13), and the probability of observing a spade, P(“spade”) =
(1/4), these two outcomes are independent. Thus, we can calculate the probabil-
ity that a queen or a spade (or both) shows up from Rule P3.4 as P(“queen” U
“spades”) = P(“queen”) + P(“spades”) — P(“queen” N “spades”) = (1/13) + (1/4) —
(1/52), which equals 16/52. We can get the same answer by counting the number
of queens (4) and the number of spades that are not queens (12) out of 52 cards
(=16/52), where this calculation avoids counting the intersection (the queen of
spades) twice. As another example, the probability of getting a red card is 1/2,
which equals the probability of getting a heart (1/4) plus the probability of getting
a diamond (1/4). In this case, we don't have to subtract off the intersection,
because “heart” and “diamond” are mutually exclusive outcomes (Rule P3.5).

Exercise P3.1: For each question, write the answer as P(insert appropriate descrip-
tion) = solution, and state any assumptions that you make.

(a) In a forest, imagine that 1% of trees are infected by fungal rot and
0.1% have owl nests. What is the probability that a tree has both fun-
gal rot and an owl nest if the two are independent? If the two are
mutually exclusive?

(b) Individuals of blood type O that are Rhesus negative are universal
donors. If 46% of individuals have blood type O, if 16% of individu-
als are Rhesus negative, and if the two blood types are independent
of one another, what is the probability that a randomly chosen indi-
vidual is a universal donor (0—)?

(¢) In a population, 46% of individuals have blood type O, 40% have

blood type A, 10% have blood type B, and 4% have blood type AB.

An individual with blood type A can receive transfusions from people

with blood type O or A. What is the probability that a donor has the

appropriate blood type for a patient of blood type A?

Two independent studies are performed to test the same null hypoth-

esis. What is the probability that one or both of the studies obtains a

(continued)
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Exercise P3.1 (continued)

significant result and rejects the null hypothesis even if the null
hypothesis is true? Assume that, in each study, there is a 0.05 proba-
bility of rejecting the null hypothesis.

Answers to the exercises are provided at the end of the primer.

P3.2 Conditional Probabilities and Bayes’ Theorem

Unless two outcomes are independent, the probability of observing one out-
come depends on whether the other outcome is observed. Conditional probabil-
ities describe the relationship between outcomes.

Rule P3.6: Conditional Probability

Given that outcome B has occurred, we write the probability of
observing outcome A as P(A | B). The “I” can be read as “given
that” or “conditional upon.” By definition, P(A | B) equals

P(A B)

PAIB) = B

That is, the probability of observing A given that B has occurred,
P(A | B), is the fraction of cases in which B occurs, P(B), that A
also occurs, P(A B).

For independent outcomes, P(A | B) = P(A), because observing B
provides no information about whether or not A has occurred.

For mutually exclusive outcomes, P(A | B) = 0, because observing B
implies that A has not occurred. '

Conditional probabilities can make it easier to determine the probability
that two outcomes are both observed. The probability of both A and B occur-
ring, P(A B), is the probability of observing B times the probability that, among
those cases in which B occurs, A occurs:

P(A B) = P(B) P(A | B). (P3.1a)

Rearranging (P3.1a) we get the definition for P(A | B) given in Rule P3.6. Of
course, the same reasoning allows us to write this joint probability as

P(A B) = P(A) P(B | A), (P3.1b)

which is the probability of observing A times the probability of observing B
given that A has occurred.

These formulae look simple enough but they are extremely powerful. They
immediately lead to one of the most important theorems in probability:
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Rule P3.7: Bayes’ Theorem

Because the joint probability of observing two outcomes, P(A B),
equals both P(B) P(A | B) and P(A) P(B | A), we can determine one
conditional probability from the other using Bayes’ theorem:

P(A1B) P(B)

P(B1A) = B0

As an example, suppose we want to calculate the probability that a person
will die of lung cancer given that they smoke. We could study a cohort of indi-
viduals, determining which ones smoke and which ones don’t and tracking
them until they died. At that point we could calculate the fraction of smokers
who died of lung cancer. In this example, we are trying to calculate the condi-
tional probability P(death due to lung cancer | smoker). Using Bayes’ rule, how-
ever, there is an alternative way to calculate this probability:

P(death due to lung cancer | smoker)

_ P(smoker | death due to lung cancer) P (death due to lung cancer)

P(smoker)

The probabilities on the right-hand side have already been estimated (Shopland
1995), allowing us to estimate the risk that a smoker dies of lung cancer with-
out the above-mentioned study. P(smoker | death due to lung cancer) is esti-
mated as the fraction of people that have died of lung cancer who are smokers.
P(death due to lung cancer) is estimated from death records, and P(smoker) is
estimated by polling an appropriate control population (a population similar
in age drawn from similar environments). Using the data in Shopland (1995),
P(smoker | death due to lung cancer) = 0.9, P(death due to lung cancer) = 0.3,
and P(smoker) = 0.5, the probability that a smoker will die of lung cancer is
estimated as (0.9)(0.3)/(0.5) = 0.54. Similar calculations for nonsmokers give a
probability of death of only 0.06 (Exercise P3.2¢). Thus, smokers have a nearly
tenfold higher risk of dying of lung cancer compared to nonsmokers.

Bayes’ theorem is widely used in scientific inference, using a methodology
known as Bayesian analysis (see Hilborn and Mangel 1997). As described in
Supplementary Material P3.1, Bayesian analysis allows scientists to infer
aspects of the biological world that are hard to measure directly.

Exercise P3.2:

(a) If the probability of having green eyes is 10%, the probability of hav-
ing brown hair is 75%, and the probability of having both green eyes
and brown hair is 9%, what is the probability of having brown hair
given that you have green eyes?

(continued)
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Exercise P3.2 (continued)

(b) Ability to taste phenylthiocartbamide (PTC) is thought to be deter-
mined by a single dominant gene with incomplete penetrance. Among
North American Caucasians, there is a 70% chance of being able to
taste PTC [P(taster) = 0.7]. If everybody who tastes PTC is a carrier
[P(carrier | taster) = 1] and if 80% of the population carries the gene
[P(carrier) = 0.8], what is the penetrance of the gene? That is, what is
the probability of tasting PTC if you are a carrier, P(taster | carrier)?

(c) Write a formula for the risk of dying of lung cancer given that a
person does not smoke in terms of P(smoker | death due to lung can-
cer), P(death due to lung cancer), and P(smoker). Estimate the risk of
death due to lung cancer among nonsmokers using P(smoker | death
due to lung cancer) = 0.9, P(death due to lung cancer) = 0.3, and
P(smoker) = 0.5.

We can also use conditional probabilities to calculate the overall probability
of outcome A, P(A), when A occurs in the context of a set of mutually exclu-
sive outcomes, B;, of a second random variable:

Rule P3.8: Law of Total Probability

Suppose that the outcomes, B; consist of n mutually exclusive
events whose probabilities sum to one (i.e., El_n:{’(B,-) = i)
Then the probability of A is equal to the sum of the probabilities
of A given each outcome B;, weighted by the probability of each
outcome B; occurring:

P(A) = P(A| B)) P(B,) + P(A| B) P(B,) + - - - + P(A | B,) P(B,).

For example, Rule P3.8 can be used to calculate the overall probability of a ran-
domly chosen individual contracting the flu, P(A), when some individuals have
had a flu shot (B,) and others have not (B,). If vaccinated individuals have a
probability of infection of P(A | B;) = 0.01 and nonvaccinated individuals have
a probability of infection of P(A | B,) = 0.2, then the overall probability of con-
tracting the flu is P(A) = 0.01 P(B,) + 0.2 P(B,) according to Rule P3.8. Thus, if
90% of the population were vaccinated (P(B,) = 0.9, P(B,) = 0.1), the probabil-
ity of a randomly chosen individual contracting the flu would be 0.029.

An important concept that we will see repeatedly in this primer is the
“expected value” or mean value of a random variable X. The expected value,
denoted E[X], can be thought of as the average outcome that would be
observed if the trial were repeated infinitely many times (see more precise
Definitions P3.2 and P3.9 below). There is a useful formula for calculating the
expected value of a random variable that we present here because of its anal-
ogy to the law of total probability.
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Rule P3.9: Law of Total Expectation

Suppose that the outcomes, B;, of a second random variable consist
of n mutually exclusive events whose probabilities sum to one
(e, E,”: ]P(B,») = 1). Then the expectation of a random variable
X is equal to the sum of the expectation of X given each
outcome B; weighted by the probability of each outcome B;
occurring:

E[X] = E[X | B,] P(B,) + E[X | B,] P(B,) + - - - + E[X | B,] P(B,).

The law of total expectation is analogous to the law of total probability. Either
the expected value of the random variable or the probability of a particular out-
come can be calculated by summing the conditional values over all possible
outcomes, B;, of another random variable. For example, Rule P3.9 can be used
to calculate the expected fitness (the “mean fitness”) of a population consist-
ing of three genotypes: AA, Aa, and aa. Here, the genotype is a second random
variable with three mutually exclusive outcomes. The expected fitness is then
E{W]| = E[W | AA] P(AA) + E[W | Aa] P(Aa) + E[W | aa] P(aa). In Chapter 3,
we used subscripts to write the expected fitness conditional on being AA as
E[W | AA] = W,,. If we also assume that the genotype frequencies at time f are
at Hardy-Weinberg proportions: P(AA) = p(t)%, P(Aa) = 2 p(t) q(t), P(aa) = q(t)?,
the expected fitness becomes E[W] = W, p(t)*> + W, 2 p(d) qt) + W, q()?
which equals the mean fitness in equation (3.12). The law of total expectation
is particularly helpful when it is easier to describe the distribution of X condi-
tional on the state of another factor.

P3.3 Discrete Probability Distributions

The first step in incorporating stochasticity into a model is to determine
what process (or processes) has chance outcomes and then to describe the out-
come of this process by a random variable. The next step is to describe the
“probability distribution” for that random variable, which specifies how likely
it is for the random variable to take on various values. In this section, we con-
sider discrete probability distributions, where the random variable has a dis-
crete set of mutually exclusive outcomes (e.g., 0, 1, 2). In section P3.4, we
describe random variables whose outcomes can be any point along a contin-
uum (e.g., any real number between 0 and 1). In both cases, we show how
important quantities like the mean and the variance can be derived. Key
attributes of all of the distributions are summarized in tables at the end of the
Primer.
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We start with the simplest discrete probability distribution describing the
outcome of a single Bernoulli trial:

Definition P3.1:
A Bernoulli trial has two possible outcomes, say “zero” and “one,”
where the probability of the outcome “one” equals P(X = 1) = p.

’

We will often refer to an outcome of one as a “success,” despite the fact that
outcome one is not always desirable (e.g., if “one” represents “death”). Because
there are only two outcomes, observing zero is the complement of observing
one. Thus, by Rule P3.2, P(X = 0) + P(X = 1) = 1, and the probability of observ-
ing zero is P(X = 0) = 1 — p (Figure P3.1c). For example, p might be the prob-
ability of having a successful crop (outcome 1), and 1 — p would be the
probability of having a crop failure (outcome 0).

In describing a probability distribution, we assume that the outcomes form
a mutually exclusive set (e.g., success versus failure) and that we have described
all possible outcomes. As a consequence, Rule P3.1 tells us:

Rule P3.10: The Sum of a Discrete Probability Distribution
The sum of P(X = x;) over all outcomes, x;, equals one:

SPX = a) = L

The notation X  in Rule P3.10 means the sum over all outcomes, x;. For a
Bernoulli trial, P(‘X =0) +PX=1) = (1 - p) + p, which does equal one. For
the distributions described in this primer, Rule P3.10 has been checked. If you
want to develop a new probability distribution, however, you must confirm
that your distribution obeys Rule P3.10.

Once a probability distribution has been specified, the distribution can be
plotted. Typically, histograms are used, with the area of each bar representing the
probability of observing the outcome labeled on the horizontal axis (Figure P3.2).

Besides plotting a probability distribution, the two most important quanti-
ties that we might wish to know about a distribution are its mean and its vari-
ance. We write the mean (or average, or expectation) of a random variable X as
or E[X], calculated as follows:

Definition P3.2: The Mean of a Discrete Random Variable
The mean (or average) of a discrete random variable is the sum of the
value of each outcome weighted by the probability of that outcome:

p = E[X] = D4P(X = x).
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Figure P3.2: Histograms. The area of each bar rep-
resents the probability of observing outcome O or
outcome 1 in a Bernoulli trial. Throughout,
we will draw bars whose widths are equal and
arbitrarily set to one, so that the height of the
bar gives the probability of observing the out-
come. The heights will then always sum to one.
(a) Outcomes 0 and 1 are equally probable (as in
a coin toss). (b) Outcome 1 is four times more

One way to visualize the mean is to imagine balancing the histogram depict-
ing the probability distribution on your finger, assuming that the weight of
each bar is proportional to its height. The histogram will balance perfectly
when you place your finger exactly at the mean. Thus, the mean is the “center
of mass” of the probability distribution. For a Bernoulli trial, the mean equals
p- This follows from Definition P3.2, which tells us that E[X] is O X P(X = 0) +
1 X P(X = 1), which equals 0 X (1 — p) + 1 X (p) = p. For example, if we let O
represent crop failure and 1 represent crop success and if there is a 90% chance
of a successful crop (P(X = 1) = p = 0.9), then the mean outcome will be 0.9.
In any one year, the crop will either fail (outcome 0) or be successful (outcome 1),
but we can think of the expected value as the average outcome that we would

see after an indefinitely large number of years.

Often, we want to know how dispersed the random variable is around its mean.
One measure of dispersion is the variance, which is often written as ¢ or as Var[X]:

Definition P3.3: The Variance of a Discrete Random Variable

The variance of a discrete random variable is the expected value of
(X — w)? over the probability distribution. It is calculated as the
sum of the squared distance of each outcome from the mean,
weighted by the probability of that outcome:

Var[X] = E[(X - p)*] = (% — p)?P(X = x).

X;
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For example, the variance of the distribution describing a Bernoulli trial
is equal to p (1 — p) because E[(X — w)?’ = (0 — p)* (X = 0) + (1 — p)?
P(X = 1) = p>(1 — p) + (1 — p)* (p), which factors into p(1 — p) {(1 — p) + p} =
p(l —p).

There are several alternative ways to measure dispersion around the mean,
the two most important being the standard deviation and the coefficient of
variation. The standard deviation is the square root of the variance, represented
by o. The standard deviation has the same units as the random variable and the
mean. In contrast, the variance is in terms of these units squared. The coefficient
of variation, CV, equals the standard deviation divided by the mean, o/u, and
is sometimes expressed as a percentage, o/u X 100%. The CV is a dimension-
less measure of the variability around the mean. It has the advantage of being
the same regardless of the measurement scale used (e.g., centimeters or kilo-
meters).

Table P3.1 lists several useful facts that can simplify matters when calculat-
ing expectations and variances. For example, we can use the rules of Table P3.1
to derive a second formula for the variance. We can always expand the square
in E[(X — w)?] as E[X* — 2Xu + w?]. According to Table P3.1, the expectation of
a sum equals the sum of the expectations, yielding E[X?] + E[—2Xu] + E[u?].
The mean p is a constant parameter; all such constants can be factored out of
expectations, leaving E[X?] — 2 u E[X] + u? E[1]. Finally, because E[X] = p and
E[1] = 1, we can rewrite the variance as

Var[X] = E[X?] — 2 (B3.2)

The expectation and the variance are two descriptors of a probability distri-
bution and are sometimes referred to as the first and second central moments of
the distribution. This terminology reflects the fact that they are expectations of
the first and second powers of the random variable, after subtracting the mean
so that the distributions are “centered” around the mean. In some cases, you
might be interested in knowing the skew or kurtosis (peakedness) of a distri-
bution, which are quantities related to higher moments (the third and fourth
moments, respectively). After becoming familiar with the material in this
Primer, consult Appendix S for a general method for finding moments of a dis-
tribution using “moment generating functions.”

In the following sections, we describe a number of probability distributions
that commonly arise in biology. In each case, we provide an overview of
the distribution, specify its mean and variance, and describe the contexts in
which the distribution is likely to arise. Having a good intuitive sense for
the context of each probability distribution is extremely useful. It makes it

easier to solve many probabilistic problems that arise in biology by allowing .

you to make connections between the problem and known facts about
probability distributions. Furthermore, in order to incorporate stochasticity
into any biological model, you must first choose the most appropriate probabil-
ity distribution, which is easier to do if you have a good sense of the different
possibilities.
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Some useful rules of expectations and variances. The rules involving summations assume a discrete
probability distribution, but analogous formulas involving integrals exist for continuous probability

distributions.

Rule Notes
Elc] = ¢ If ¢ is a constant
Elc X] = c E[X] If ¢ is a constant

Ef2(Ex) = 2“&'(—":‘)1)(){ = X))
l Geometric mean X = [[x/*"

Harmonic meant X =~ —

EfIXY)] = 2 DAapPX = xNY = y)

E[X + Y] = E[X] + E[Y]
E[X Y] = E[X] E[Y]

i Var[c] = 0

Var[c X] = ¢* Var[X]

Var[X + Y] = Var[X] + Var[Y]

Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X Y]
Cov[X Y] = E[X Y] — E[X] E[Y]

_ Cov[X,Y]

g,0,

p

Cov[X Y] = E[Covi[X; Y]] — Cov[E[X{] E{Yill

The expectation of the function g(X) of a random variable

The geometric mean of a random variable

The harmonic mean of a random variable

The expectation of a function f(X, Y) involving two
random variables
The expectation of a sum is the sum of the expectations

If X and Y are independent random variables, the
expectation of a product is the product of the expectations

If ¢ is a constant

If ¢ is a constant

If X and Y are independent random variables

If X and Y are not independent

Cov[X Y] describes the “covariance” between X and Y. It

equals zero if X and Y are independent.

The “correlation” coefficient standardizes the covariance by
the standard deviation of X and Y

The covariance decomposition theorem calculates the covari-
ance over a set of mutually exclusive classes, i. On the
right, Cov[ ] and E[ ] are calculated across classes, weighted
by the proportion of the population in each class, p; while
Cov;[ | and E|[ | are the covariances and expectations
within a class.

Exercise P3.3:

equals p (1 — p).

_

(a) Calculate the variance for the distribution describing a Bernoulli trial
using the definition Var[X] = E[X?] — u? and show that the variance

(continued)
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Exercise P3.3 (continued)

(b) Imagine doing an experiment involving two independent Bernoulli
trials. The total number of successes could be 0, 1, or 2. Determine the
probability of each outcome. Confirm that these probabilities sum to
one (Rule P3.10). Determine the mean outcome using Definition
P3.2. Determine the variance in the outcome using Definition P3.3.

(¢) Show that you can obtain your answers more easily for the mean
and variance of two Bernoulli trials using the following facts from
Table P3.1: E[X + Y] = E[X] + E[Y] and Var [X + Y] = Var [X] + Var [Y],
where X represents the outcome from one Bernoulli trial and Y rep-
resent the outcome from the second Bernoulli trial.

P3.3.1 Binomial Distribution

The binomial distribution generalizes a single Bernoulli trial to n independ-
ent trials. In each trial, there are two possible outcomes (say “zero” and “one”),
where the probability of outcome “one” is p in every trial. The random variable
in a binomial distribution is then the total number of ones observed in n trials,
which takes on integer values from O to n.

Definition P3.4:
The binomial distribution describes the probability of observing
a total of kK “ones” in n independent Bernoulli trials:

P(X = k) = <’,Z>pk(1 — ek

(;(') is read as “n choose k”; it equals n!/(k! (n — k)!) and represents the number of
different ways in which k “ones” can occur over the course of n trials (see
Box P3.1 on page 559 at the end of this primer for more details). For example,
(%) = 2!/(11'1!) = 2, which reflects the fact that there are two ways to get a sin-
gle “one” in two trials—the “one” can occur on the first trial or on the second
trial. By definition, 0! equals one, so that (57‘)) = 2!/(0! 2!) = 1, which reflects
the fact that there is only one way to get zero “ones” in two trials—a “one” must
not occur in the first trial or in the second trial.

For p =1/2, the binomial distribution is symmetric and bell-shaped
(Definition P1.6), while for p values near O or 1, the distribution becomes quite
skewed (Figure P3.3).

The mean of a binomial random variable is

BX] = n p: (P3.3)

This follows from the fact that the binomial represents the sum of n random
variables, each of which corresponds to a single Bernoulli trial (see Exercise
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(a) 0.5

Probability

(b)
}
> p=0.1
=
<
e
) =
o
3 4 5 6
C
() s
= 03
e
g 02 Figure P3.3: Binomial distribution (Definition
01 P3.4). Each bar represents the probability of
’ observing a particular number of successes
(from zero to six) among six trials (n = 6). The

0 1 2 3 4 5 6 probability of success is (a) p = 0.5, (b) p = 0.1,
Outcome (©p=09.

P3.3). Because the expected value of a sum of random variables equals the
sum of the expected values of each random variable (Table P3.1), and because
E[X] = p for each Bernoulli trial, the sum of n such trials has an expected
value of n p.

Similarly, the variance of a binomial random variable equals

Var[X] = np (1 - p). (P3.4)

This follows from the fact that the variance of a sum of independent random
variables is the sum of the variance of each random variable (Table P3.1) and
from the fact that Var[X] = p (1 — p) for a single Bernoulli trial.

Examples

The binomial distribution arises when there are a number of independent
trials and each trial results in one of two possible outcomes. For example, if

h—
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there is a 50% probability of having a daughter (p = 0.5), the binomial distri-
bution would describe the probability of observing a certain number of daugh-

S

ters in a family, e.g., three daughters among five children: P(X = 3) = (3)
(0.5)%(0.5)° = 5/16. The binomial distribution also arises when a binary attrib-
ute (e.g., diseased or healthy, flowering or not flowering) is measured in a sam-
ple of size n taken from a population. This assumes that the sample is only a
small fraction of the total population or that sampling occurs with replacement
so that p does not change as we take our sample.

The binomial distribution is very helpful when interpreting data and simu-
lations. For example, you might collect data on the number of frogs with and
without limb defects near a nuclear reactor. Often, you will be collecting such
data to estimate an unknown parameter p (e.g., the probability of limb defects).
We can estimate p using equation (P3.3) by dividing both sides by n and replac-
ing the expected number of ones, E[X], with the observed number, x, giving an
estimate of p = x/n, where we have written a tilde over the p to indicate that
it is an estimate. We can also estimate Var[X/n], which describes the variance
in this estimate of p. Given that Var[c X] = ¢* Var[X] (Table P3.1), the variance
of X/n is Var[X]/n* = n p (1 — p)/n* = p (1 — p)/n. Replacing p with its estimated
value P, the variance of the estimate for p becomes p (1 — p)/n. Taking the
square root of the variance, we get the standard deviation of the estimate for p
(referred to as the “standard error of the proportion,” SE): SE = Vp(1 — p)/n.
As a rule of thumb, the true value p has roughly a 95% chance of lying within
two standard errors of the estimate p. (Note: Replacing p with p in the variance
introduces a bias, especially when 7 is near 0 and 1. More exact treatments cor-
rect for this bias; see Zar (1998).)

P3.3.2 Multinomial Distribution

For some problems, each trial might have more than two possible outcomes.
For example, you might want to classify the offspring of a cross as homozygous
AA, heterozygous Aa, or homozygous aa. The multinomial provides such an
extension to the binomial distribution.

Definition P3.5:

The multinomial distribution describes the probability of observ-
ing {ky, k,, . . ., kJ individuals in each of ¢ discrete categories, where
the probability of observing an outcome in category i is p;.

n!
P(X = {kuks, ..., k}) = mpﬁ‘ L

The expected number in category i and the variance in this number are

E[X|] = np, (P3.5a)
Var[X;] = np, (1 — p). (P3.5b)

l'
|
!
|
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Example

[f you were to survey plants within a tropical forest, the probability of
observing a certain number of each species would be described by a multino-
mial distribution, with n equal to the total number of individuals that you sam-
ple and p; equal to the proportion of plants of species i.

P3.3.3 Hypergeometric Distribution

In section P3.3.1, we mentioned that the binomial distribution arises when
sampling # individuals from a population that has a proportion p of individu-
als of a certain type. Technically, this claim is true only if each individual sam-
pled is replaced before the next individual is sampled, otherwise p will change
as the sample is gathered, causing the outcome of each trial to depend on the
outcomes of previous trials. If sampling occurs without replacement, the hyper-

| geometric distribution describes the distribution of possible samples.

Definition P3.6:

The hypergeometric distribution describes the probability of
| observing k “ones” in a sample of size n, which is randomly
drawn without replacement from a population of size N:

(1))

] P(X = k) =

where N; = N p is the number of “ones” and N, = N (1 — p) is
the number of “zeros” in the total population before sampling.

The probability distribution for a hypergeometric distribution looks compli-
cated but it can be derived by counting up all of the types of samples that could
occur (Box P3.1). The denominator represents the number of different ways
(i.e., the number of combinations; Box P3.1) in which » individuals can be cho-
sen without replacement from a population of size N, regardless of whether
they are successes or failures. For example, there are three ways to chose two
individuals (n = 2) from a population of size three (N = 3): either the first, the
second, or the third individual can be left out. Out of all of these possibilities,
we then need to count up all of those instances in which there were exactly k
successes and n — k failures. Moving to the numerator, the quantity (’:‘) is the
number of ways (i.e., the number of combinations) in which k successes can be
drawn (without replacement) from the subpopulation of N, successes without
caring about the order in which they occur. For each. of these, there are then
(,,"ilk) different ways (i.e., combinations) in which the desired n — k failures can
be drawn (without replacement) from the subpopulation of N, failures. Thus
the total number of ways in which we can obtain exactly k successes and n — k

_
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failures is ("\kf’)(”'\"‘k). Consequently, of the (:) ways that we could sample n

individuals from a population, only (‘i‘)(”‘\fk) of these will contain k successes

and n — k failures. The fraction of samples with k successes is thus given by
Definition P3.6.

Using Definitions P3.2 and P3.3, the mean and variance of a hypergeomet-
ric random variable are

E[X] =np, (P3.6)
N —n

Var(X] = np (1 — p)N —1

(P3.7)

The mean is the same as a binomial random variable (P3.3). But, the variance
is a factor (N — n)/(N — 1) smaller than the variance of a binomial random vari-
able. The variance decreases toward zero as the sample size approaches the pop-
ulation size (n — N), because the composition of the sample becomes nearly the
same as the composition of the whole population. Conversely, if the sample
size is very small relative to the population size (n << N), then (N — n)/(N — 1)
approaches one, and the hypergeometric distribution converges upon the bino-
mial distribution.

Example

Imagine that you are studying the nesting behavior of puffins on an island,
which contains N = 100 suitable nesting cavities. Of these nesting cavities,
30 are on a cliff face that is inaccessible to mammalian predators, while the re-
mainder are on a grassy slope. You watch as the first n = 20 puffins choose cav-
ities and begin nesting, and you observe that k = 11 choose cliff sites. Thus,
among the first nesters, you observe a higher proportion (11/20 = 55%) using
cliff sites than expected on the basis of the proportion of cliff sites (30/100 =
30%). The hypergeometric distribution can be used to determine the probabil-
ity of observing exactly k = 11 nesting on the cliff:

()
LA 9
P(X =11) = ——— = 0.0066.
100

()
Of greater interest is the probability that 11 or more early nesters choose cliff
sites, which again can be calculated from the hypergeometric distribution:
PX = 11) = i‘inp(x = k) = 0.008S. This probability is so low that you
can conclude it is unlikely that early nesters are randomly choosing their nest
sites and that they appear to prefer cliff sites.

P3.3.4 Geometric Distribution

All of the above distributions (binomial, multinomial, and hypergeometric)
describe the number of outcomes that fall into different categories (e.g., cliff
nesters vs noncliff nesters). Each outcome falls into some category, and these
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distributions predict “counts” in each category. In contrast, the distributions
discussed next (geometric, negative binomial) were derived to describe how
much time passes before a particular outcome (or set of outcomes) is observed.
Despite this fundamental difference, the geometric distribution is again based
on a series of Bernoulli trials.

Definition P3.7:
The geometric distribution describes the probability that, in a
series of Bernoulli trials, the first success is observed on the kth trial:

P(X =k) =p(1—p)

The geometric distribution is derived as follows. For the first success to occur
on the kth trial requires that the previous k — 1 trials were unsuccessful.
Assuming that each Bernoulli trial is independent of previous ones, the proba-
bility of k — 1 unsuccessful trials is the product of the probability that each trial
is unsuccessful, which is (1 — p)*!' (Rule P3.4a). Following this series of fail-
ures, the kth trial will be successful with probability p. Because each trial is
independent, we can multiply these terms together to get the geometric distri-
bution.

Because at least one trial must occur to observe a success, k can be any inte-
ger greater than or equal to one. P(X = k) always declines with increasing k
because every trial that passes unsuccessfully decreases the probability by a fac-
tor (1 — p). Thus, the event that there are no failures prior to the first success
(i.e., k = 1) always has the highest probability (Figure P3.4).

(a) 0.5
0.4 p=05
2
= 03
O
B 02
S 02
EIRN ]

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

(b) 05
0.4
£ 03 r
§ 0.2 Figure P3.4: Geometric distribution (Definition
E P3.7). Each bar represents the probability that the

L ..... first successful event occurs after a particular
— . number of trials (from one to infinity). The proba-
234567 89101112131415 bility of success in any one trial is (a) p = 0.5,

Number of trials until first success (b) p = 0.1.
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The mean of a geometric random variable is given by E[X] = 1/p. To get
more comfortable working with sums, it is worth deriving this fact. We start
with Definition P3.2 giving the mean:

EX] = Skp(1 - p) L. (P3.8)
k=1

This sum is not one of those listed in Appendix Al, but consider taking the deriv-
ative of both sides of A1.20 with respect to a, giving us 2;2 jat =1/1 - a)
(To see this, it might help to think about writing out the summation as a + a* +
a* + - - -). If we factor out p from (P3.8) and let a = 1 — p, the sum in (P3.8)
can be written as p3, k@', which equals p/(1 — a)%. Pluggingina =1 — p,
the mean equals

E[X] = — (P3.9)
In a similar fashion, the variance of the geometric random variable is

Var[X] = == (P3.10)

Examples

The number of courtship displays made by a male before he successfully
mates might be described by a geometric random variable. Here, each time a
male displays is a Bernoulli trial resulting in a mating (“success”) or not (“fail-
ure”). The key assumption for this process to be described by a geometric dis-
tribution is that the probability that a mating attempt succeeds remains
constant over time and is not influenced by (“is independent of”) the outcome
of previous mating attempts. The geometric distribution might also describe
the time until extinction of an endangered population that is censused yearly,
if the probability of extinction is constant. Thus, with an annual extinction risk
of 10% (p = 0.1), the expected time until extinction is ten years (i.e., 1/p =
1/0.1 = 10). The variance in this case is pretty large (90 years squared). This
means that the actual year in which the population goes extinct is very hard to
predict, as suggested by Figure P3.4.

P3.3.5 Negative Binomial Distribution
The negative binomial distribution generalizes the geometric distribution
and describes the waiting time until r “successes” have occurred:

Definition P3.8:
The negative binomial distribution describes the probability that,
in a series of Bernoulli trials, the rth success is observed on the kth trial:

pxc= = (K2 1) ra-ar
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For the rth success to occur on the kth trial, there must have been r — 1 suc-
cesses in the previous k — 1 trials. We have already described the probability of
observing a certain number of successes out of a total number of trials: it is
given by the binomial distribution. Thus, we can write the probability distri-
bution for the negative binomial as the product of the binomial probability of
observing r — 1 successes out of k — 1 trials, (f . 1‘) PN (1 — p)* 7, multiplied
by p, the probability that the kth trial is a success.

Because at least r trials must occur to observe r successes, k can be any integer
greater than or equal to r. Now, P(X = k) does not always decline with an increas-
ing numbers of trials (k). In fact, if we were waiting for a large number of success-
ful outcomes, the negative binomial distribution has a bell shape (Figure P3.5).

We can think of the negative binomial distribution as describing the sum of
r independent random variables: the sum of the waiting times before each of
the r successful trials. Each of these waiting times follows a geometric distribu-
tion with mean 1/p and variance (1 — p)/p*. Using the fact that the expectation
of a sum is the sum of the expectations, the number of trials until the rth suc-
cess is expected to equal

E[X] = - (P3.11)

Similarly, because the variance of a sum of independent random variables is the
sum of the variance of each random variable (Table P3.1), the variance of a neg-
ative binomial random variable is:

=
Var[X] = ( = p) (P3:12)
P
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Number of trials until fourth success
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Figure P3.5: Negative binomial distribution
(Definition P3.8). Each bar represents the proba-
bility that (a) the fourth successful event occurs
after a particular number of trials (from four to
0.2 infinity) and (b) the eighth successful event occurs
after a particular number of trials (from eight to
b . I l.l.. infinity). The probability of success in any one trial
— is p = 0.5 (Figure P3.4a describes the comparable

probability distribution for the first successful
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Example

[f a predator must capture r = 10 prey before it can grow sufficiently large to
reproduce, and if it has a 10% success rate per hunt (p = 0.1), the age of onset
of reproduction would be described by the negative binomial distribution. On
average, the predator must go on 100 hunts before it can reproduce, where the
variance in this number is 900 hunts? (SD = 30 hunts).

P3.3.6 Poisson Distribution

The last of the discrete distributions that we will visit is the Poisson distri-
bution. It differs fundamentally from the above distributions because it
describes neither the numbers that fall into various categories (binomial, multi-
nomial, and hypergeometric) nor the waiting time until a certain number of
events have occurred (geometric, negative binomial). Rather, the Poisson dis-
tribution describes the number of events that occur in a given time period (or
within a given area) when events occur randomly and independently over time
(or space). The Poisson distribution naturally arises when counting the number
of events witnessed during an observation period, such as the number of birds
that stray onto an island within a year or the number of seedlings that germi-
nate on a plot within a week.

Definition P3.9:

The Poisson distribution describes the probability of observing k
events in a given space or time period when the expected number
of events is u and when each event occurs independently:

If you know the rate at which events occur per unit time (A), then the expected
number of events is u = At, where t is the time period of observation. Similarly,
if you know the density of events per unit area (§), then the expected number of
events is w = 6A, where A is the area under observation. The actual number of
events that occurs, k, can be any integer from 0 to infinity. When w is small, the
Poisson distribution is skewed, and the probability of observing no events or only
one is high. Alternatively, when p is large, the Poisson distribution becomes bell
shaped, with the most likely number of observations centered on u (Figure P3.6).

The Poisson distribution has an unusual attribute in that its mean equals its
variance:

E[X] = n
= Var[X]. (P3.13)

Another important attribute of the Poisson distribution is that the sum of a
number of Poisson random variables is itself Poisson distributed (Supplementary
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Material P3.2). For example, if the number of hemlock seedlings, the number
of cedar seedlings, and the number of fir seedlings that emerge within a square
meter is Poisson distributed, then their sum, describing the total number of
tree seedlings that emerge, will also be Poisson distributed.

Examples

If hummingbirds arrive at a flower at a rate A = 0.2 per minute, the expected
number of visits in £ = 20 minutes of observation would be x = 4. Assuming
that hummingbirds arrive independently and randomly over time, we would
expect the actual number of visits to be Poisson distributed with a mean and
variance of 4. If the observed variance is significantly lower, this would call into
question the assumption that hummingbird visits occur independently over
time and indicates that birds tend to space out their visits, causing the visits to
be more evenly distributed than expected under the Poisson distribution.

As another example, the Poisson distribution describes the number of new
mutations that an individual is expected to carry. In the diploid human
genome, there are about A = 6.4 X 10° basepairs and the mutation rate per gen-
eration per basepair is approximately § = 1.8 X 10°® (Kondrashov 2003). In this

! case, we are monitoring a particular area (A4, here the stretch of DNA) for events

“ that occur at a particular density (5). The expected number of events is then
AX &6 = 1135.2. According to a Poisson distribution, the variance should also
equal 115.2, and the standard deviation should be V'115.2 = 10.7. Furthermore,
if we plot the Poisson distribution with mean 115.2, we can predict that about
95% of us carry between 96 and 136 new mutations that were not present
within our parents (Figure P3.7).
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0-05¢ 3.0% 94 4% 2.6%
Figure P3.7: The distribution of the number of . 0.04
mutations according to a Poisson distribution =
with mean g = 115.2 (Definition P3.9), the _g 0.03
number of mutations is expected to fall between _8
96 and 136 in 94.4% of cases. (From 0 to 95 £ 002
accounts for 3.0% of the distribution; from 137 to
infinity accounts for 2.6% of the distribution. 001
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the distribution each.)

Number of successes

Although we have used a Poisson distribution to describe the number of
mutations, technically, this assumes that mutations can occur at any real-
valued position and ignores the discrete nature of the nucleotides that make up
chromosomes. In reality, a mutation alters the first nucleotide, the second
nucleotide, . . . or the nth nucleotide in the sequence. We can capture the dis-
crete nature of mutations using a binomial distribution to describe the proba-
bility of observing k mutations out of n = 6.4 X 10? nucleotides, where the
probability of a mutation (a “success”) is p = 1.8 X 10°® per generation.
According to the binomial distribution, the mean number of mutations isnp =
115.2 and the variance is np (1 — p) = 115.2. Interestingly, these are the same
mean and variance predicted by the Poisson distribution. In fact, the binomial
distribution converges upon a Poisson distribution whenever the probability of
success, p, is small and the number of trials, n, is large. In this case, the vari-
ance of the binomial, np (1 — p), is nearly equal to the mean, n p, which is a
property of the Poisson distribution. The higher moments also converge, as can
be shown using moment generating functions (Appendix 35).

Exercise P3.4: Unlike the Poisson distribution, the sum of two independent ran-
dom variables, each following a binomial distribution, is not generally
binomial. Let X represent the outcome from n; Bernoulli trials each of
which has a probability of success of p,, and let Y represent the outcome
from n, trials with probability of success p,. What is the variance of the
sum of these two random variables, X + Y? Show that Var[X + Y] cannot
be factored into the form n p (1 — p) and so does not equal the variance
expected if the sum were binomial, unless p, = p,. As an example, con-
sider n; = 100 trials with p; = 0 and n, = 100 trials with p, = 1. What is
Var[X + Y]? For comparison, what variance would you expect from the
binomial distribution with n = 200 trials and an average proportion of
successes, p = 1/2?

P3.4 Continuous Probability Distributions

In the previous distributions, the possible outcomes were discrete (e.g., integers
from O to n). What if you were interested in a random variable that could take
on any real value (e.g., any point in time)? Random variables that can take on
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a continuum of possible values are known as continuous random variables. The
procedures described above to calculate the total probability, mean, and vari-
ance for discrete random variables are similar to the procedures for continuous
random variables, but there is one crucial difference. Imagine calculating the
sum in Rule P3.10, EX P(X = x;) = 1, for a continuous random variable.
Because there is a continuum of possible outcomes (e.g., all points in time), this
sum would be infinitely large if P(X = x;) were finite for every possible value of
x;. Even for a continuous random variable, however, the total probability that
the random variable takes on some value must be one, not infinity.

How is this discrepancy resolved? It is resolved by recognizing that, with a
continuum of possible outcomes, the probability of any one particular out-
come is not a finite number but is, instead, infinitesimally small. For example,
if a continuous random variable lies between 0 and 1, the probability of it tak-
ing on the exact value of, say, 1/8 (i.e., 0.12500000 . . .) is essentially zero. The
same is true for any other particular value. Because we cannot talk about the prob-
ability of any one outcome, we instead describe the probability that the ran-
dom variable X falls within a small interval dx of x:

Px < X <x + dx) = f(x) dx, (P3.14)

where f(x) is known as the “probability density function” describing the proba-
bility distribution for a continuous random variable. Typically, f(x) is drawn as
a curve over the region of possible outcomes x (Figure P3.8). Equation (P3.14)
can be interpreted as the area of a histogram with a height of f(x) and a very
small width of dx, which gives the probability that the random variable falls
within a region from x to x + dx. More generally, the area under the curve
between any two points, a and b, equals the probability that the random vari-
able falls between a and b (Figure P3.8):

b
Pla< X < b) = /f(x)dx. (P3.15)

Thus, the probability density function tells us the regions in which the random
variable is likely to fall (high f(x)) or unlikely to fall (low f(x)).

Area under curve must equal one

Probability of an event
between a and b

Ax) describes the height
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Figure P3.8: A probability density function with
height f(x). To represent a probability distribution,
the area under the curve must equal one, and its
height must never be negative. The probability of
falling within any particular interval (e.g., between
points a and b) is the area under the curve within
this interval (hatched). Regions in which the curve
is high (f(x) is large) are more probable than

X regions in which the curve is low.
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Replacing P(X = x;) with f(x) dx and summations with integrals, we can pro-
ceed to analyze continuous random variables as before. In particular, because
the random variable must take on some outcome, we have the following rule:

Rule P3.11: The Integral of a Continuous Probability Distribution
The integral of f(x) over the range of possible outcomes must equal one:

/a flx)dx = 1.

min

As with a discrete probability distribution, the mean of a continuous proba-
bility distribution equals the average value that would be obtained from an
infinite number of draws from the distribution. To calculate this average, we
use a definition analogous to Definition P3.2:

Definition P3.10a: The Mean of a Continuous Random Variable

The mean of a continuous random variable is given by integrating
the value of each outcome x weighted by the probability density
function f(x) over the range of possible outcomes:

max

w = E[X] = /xf(x)d.x.

min

Again, the mean can be visualized as the “center of mass” of the probability
distribution represented by the curve f(x).
The variance of a continuous random variable is calculated in a similar fashion:

Definition P3.10b: The Variance of a Continuous Random Variable

The variance of a continuous random variable is the integral of the
squared distance of each outcome x from the mean, weighted by
the probability density function f(x):

VarlX] = E[(X = w?) = [ (x = wP e ax -
Equivalently, the variance equals

Var[X] = E[X?] — p2 = /xz f)dx | — 12




Probability Theory 539
fx)

Uniform distribution
|

(max — min)

Figure P3.9: Uniform distribution (Definition
P3.11). All outcomes between x = min and x =
max are equally likely, and no outcome outside
this region can occur.

min max

X

We turn next to a description of some of the most important continuous
probability distributions.

P3.4.1 Uniform Distribution

The uniform distribution is the simplest continuous probability distribution.
It describes a random variable that is equally likely to fall at any point within a
range from min to max (Figure P3.9). Within this range, the probability density
function has a constant height f(x) = h, which is calculated from the fact that
the integral over the range of possible values must equal one (Rule P3.12):

max

hdx = hmax — hmin = 1, (P3.16)

min

Solving for h, we get h = 1/(max — min).

Definition P3.11:

The uniform distribution describes the probability density at x
for a random variable when all outcomes between min and max
are equally likely:

1
) = ———=— for min < x < max
max — min

and f(x) = 0O for x outside of min and max.

Intuitively, the mean of a uniform probability density function occurs half-
way between min and max. Indeed, applying Definition P3.9, we get

max

E[X] = /X*li_dx
max — min

min
max

(21
2 max — min

min

i
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> 5
(max® — min-)

= — — (P3.17)
2(max — min)
max + min

The variance is not so easy to intuit, but it can be determined using Definition
P3.10:

Var[X] = /.(x — w)? flx) dx

max

max + min \?
= X — — (bt
2 max — min

i (P3.18)

l(x _ max + min)3
3 2 maxe =

(max — min)?
12 ’

[

Il

p—t
2
=)
N ?

Examples

Imagine that you are studying mating behavior in Drosophila. The flies are
in a cage and reproducing continuously. For your study, you watch the flies in
ten-minute intervals (600 seconds) and record each time a mating takes place.
You notice that out of 100 matings, none occur within the first 20 seconds.
This makes you concerned that the initial handling might affect the behavior
of the flies. To test this, you determine the probability that a mating occurs any
time after 20 seconds:

600

1 29
/@dx = % (P3.19)
20 .

This is the probability that one mating is observed after 20 seconds, assuming
that the probability of mating is uniformly distributed over the 600 seconds of
observation. The probability that all 100 matings occur after 20 seconds would
then be (29/30)'®° = 0.034 (Rule P3.4a). As this is a small probability, you con-
clude that handling might well have an influence on the flies, making them
initially less likely to mate.

As another example, imagine a chromosome that is 2 Morgans in length.
(A Morgan gives the distance along a chromosome within which one recombi-
nation event, or crossover, occurs, on average.) Among those chromosomes
containing a single crossover, the mean observed position of the crossover is at
1 Morgan with a variance of 1/2. If crossovers occurred uniformly across the
chromosome (min = 0 and max = 2 Morgans), we would expect the mean posi-
tion to be at 1 Morgan with a variance of (2 — 0)%/12 = 1/3. Thus, there is more
variance than expected based on a uniform distribution of crossover positions.
If this increase in variance were significant, it would suggest that crossovers are
less likely to occur near the middle of the chromosome.
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P3.4.2 Exponential Distribution

The exponential distribution arises when measuring the time until an event
first occurs in continuous time.

Definition P3.12:

The exponential distribution describes the probability density
of the waiting time x until an event first occurs under the
assumption that events occur at a constant rate a per unit time:

f(x) =ae™ for0=x=»

Here we write the waiting time as x rather than t to be consistent with the
other probability distributions. We also use the rate parameter « to be consis-
tent with the gamma distribution described next. In the biological literature, A
is often used as the rate parameter in place of «.

To derive the exponential distribution, consider calculating the probability
P(x) that no events occur before time x. From the results of previous chapters,
we can write a recursion equation for P over a small time step dx as P(x + dx) =
P(x) (1 — adx). In other words, the probability that the event has still not
occurred at time x + dx is just the probability that it had not occurred at time
x, multiplied by the probability it does not occur in the time interval dx. As we
saw in Box 2.6 of Chapter 2, we can rearrange this as (P(x + dx) — P(x))/dx =
—a P(x) and then take that limit as dx gets small to obtain the differential equa-
tion dP/dx = —a P(x). This differential equation has the form of the exponen-
tial growth model and can be solved to get P(x) = e ** (see Chapter 6). For the
event to occur for the first time near time x (i.e., between time x and x + dx),
we multiply the probability that the event does not happen before time x, P(x) =
e **, by the probability that the event does occur in the short interval of time
dx, which is adx. This gives us ae"** dx, which equals the exponential proba-
bility distribution f(x) times the time interval dx.

The exponential distribution starts at height, «, when x = 0 and declines
exponentially with x at rate « (Figure P3.10). The total area under the curve cor-
rectly integrates to one (Rule P3.11):

o0

/ae"”‘ dx = - %¢ —_ (P3.20)

@ 0
0

Using Definitions P3.10a and P3.10b, the mean and variance of an exponen-
tial random variable are:

E[X] = é (P3.21)

Var[X] = i (P3.22)

(see Exercise P3.6).
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Figure P3.10: Exponential distribution (Definition P3.12). The probability density function,
f(x), declines exponentially with x. Although the expected outcomes are (a) » = 0.5 and
(b) 1 = 0.1, the most likely outcomes are always near zero (f(x) is highest at zero). The
inset figures compare the exponential distribution (continuous curves) to the geometric
distribution (discrete bars). The two distributions are similar when w and p are similar

and small.

The exponential distribution applies only if the rate of events per unit time
is constant. For the rate to be constant, the probability that the event occurs in
a short interval of time dx must always be the same, adx. This is not the same
as events occurring at regular intervals, which would exhibit a rate of zero
except at these regular points in time. It is not necessary, however, for all events
to be identical in kind; the exponential distribution continues to apply when
events can be broken down into subcategories, just as we saw with the Poisson
distribution. For example, the death rate from cancer might be «,, the death
rate from heart attacks might be «,, and the death rate from other causes might
be a;. Yet if we are only interested in the time until death, its distribution would be
exponential with a rate parameter equal to the total death rate « = a; + a, + a3,
as long as « is constant over time.

Examples

If individuals die at a constant rate « per unit time, the lifespan of the indi-
vidual is described by an exponential distribution. Here, the lifespan is meas-
ured in continuous time so that an individual could have, for example, a
lifespan of 70.23853 years. This differs from the geometric distribution, which
can also be used to describe the age at which an individual dies but which
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measures lifespan in discrete age classes (e.g., 70 or 71 years). Which distribu-
tion is most appropriate depends on the precision desired as well as the infor-
mation provided about the chance of death. If the chance of death is given as
an instantaneous death rate, a, then the exponential distribution should be
used. If the chance of death is given as the probability of death within a year,
p, then the geometric distribution should be used. That said, we can always
convert a death rate « into the mortality risk in one year using the integral

!
p = P(death per year) = / ajer*dys = 1 =eh s (P3:23)

x=0

Equation (P3.23) provides a way of translating between an exponential distri-
bution in continuous time and a geometric distribution in discrete time (see
Exercise P3.5). As a numerical example, if the death rate is « = 0.1 per year,
then the probability of dying within a year is p = 0.095. These numbers predict
similar mean life spans (E[X] = 1/« = 10 years according to the exponential dis-
tribution versus E[X] = 1/p = 10.5 years according to the geometric distribu-
tion). In fact, whenever the rate of events is small, the exponential and
geometric distributions are very similar in shape with p = « (Figure P3.10).

The exponential distribution also arises when measuring the distance trav-
eled until a certain event occurs, assuming that the event occurs at a constant
rate per distance. For example, if a bee is foraging and stops at flowers at a con-
stant rate, «, per meter, then the distance until it stops at a flower would be
exponentially distributed. If « were 0.05 per meter, then the mean distance
traveled between flowers would be E[X] = 1/a = 20 meters with a standard
deviation of SD[X] = 1/a = 20 meters. Essentially, we are measuring a waiting
time in this example, but in terms of meters traveled rather than chronologi-
cal time.

Exercise P3.5: Based on the exponential distribution, calculate the probability
that an event occurs for the first time between the interval of time k — 1
and k. Rewrite your answer in terms of the annual mortality risk by
replacing e ® with 1 — p (see equation (P3.23)). Show that the result,
which describes the probability that the event first occurs within the time
interval between k — 1 and k, is the same as the geometric probability
distribution.

Exercise P3.6: [Advanced]

(a) Calculate the mean for an exponential distribution using Definition
P3.10a. Remember to restrict the range of x from 0 to positive infinity.

(b) Calculate the variance for an exponential distribution using Definition
P3.10b. Remember to restrict the range of x from 0 to positive infinity.

(c) Calculate the mean and the variance for an exponential distribution
using the fact that its moment generating function is MGF(z) =
a/(a—2z) (see Appendix 5).
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P3.4.3 Gamma Distribution
The gamma distribution generalizes the exponential distribution by describ-
ing the waiting time until g events occur:

Definition P3.13:

The gamma distribution describes the probability density that
x amount of time passes before B events occur when each event
occurs at a constant rate, «, per unit time:

(1/3 -
fix) = xE=t e for 0 = x = =,

I'(B)

20

where I'(8) = / e 7yP ldy is known as the gamma function.

Jy=0

When 8 = 1, I'(1) = 1 and the gamma distribution reduces to the exponential
distribution.

The gamma distribution can be derived by drawing a connection to the
Poisson distribution. For x to be the first time that 8 events have occurred,
there must have been 8 — 1 events within the time interval from O to x. The
probability of observing 8 — 1 events in a fixed time interval is described by the
Poisson distribution, with an expected number of events equal to the rate of
events times the time interval: © = « x. This Poisson probability must then be
multiplied by the probability that the fth and final event occurs between time
x and x + dx (i.e., a dx). The probability density function for observing B events
for the first time near time x is therefore

= ()
X)= N
(B -1
| —
Poisson distribution of observing

B — 1 events given a mean of « x

(P3.24)

This derivation assumes that B is an integer, but the gamma distribution is typ-
ically written in a more general fashion that allows for any positive value of 8
(see Definition P3.13). To generalize (P3.24), we replace the factorial (3—1)!,
which is defined for integers only, by a new constant that is chosen to ensure
that f{x) integrates to one. Using equation (P3.24) in Rule P3.11, this constant
must equal [;2,e “a’x~'dx. This integral can be simplified by rewriting it in
terms of y = a x (and hence dy = a dx), giving [;% e Yo’ (y/a)’~'(dy/a). The a
terms cancel out of this integral, leaving us with [;%,e™y#~'dy, which is
known as the gamma function, I'(8). The gamma function generalizes factori-
als to any real number; when g is an integer, I'(8) = (8—1)!. For more facts
involving gamma functions, see Abramowitz and Stegun (1972).
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The gamma distribution in Definition P3.13 can be thought ot as the
continuous-time version of the negative binomial distribution. The main dif-
ference is that the probability density function is positive for the gamma dis-
tribution regardless of how little time has passed, because there is always some
small chance that all 8 events occur in rapid succession. In contrast, we must
wait until at least r trials have passed in discrete time before the probability of
observing r events is positive with the negative binomial distribution.

The mean and variance of a gamma distribution can be calculated using
Definition P3.10. It is easier, however, to use the fact that the gamma distribu-
tion represents the sum of 8 waiting times, each of which is exponentially dis-
tributed. Because the expectation of a sum of independent random variables is
the sum of the expectations and the same is true for the variance (Table P3.1),
we can multiply the mean and variance of the exponential distribution by  to
get the mean and variance of the gamma distribution:

, (P3.25)

Var[X] = (P3.26)
(see Exercise P3.7).

Examples

Consider an experiment in which you wish to study g = 100 grooming
events in a baboon colony. If the rate of grooming events is two per hour (« =
2/hour), then you would expect the study to take 50 hours (8/a = 100/2 hours)
with a standard deviation of 5 hours (V/B/a?). Furthermore, you can use the
gamma distribution to tell you what the chances are that you complete the
study by any given time. For example, if you were only able to have 60 hours
of observation time, the probability that you will successfully observe 100
grooming events would be 97.2%, as calculated from the integral

60

B
/ L _yB-le=xdy = 0.972.
r'(g)

X—

As another example, imagine that you are collecting truffles in a forest and
you find one truffle every 200 meters. The rate at which you encounter truffles
is thus @ = 1/(200 meters). If you wish to collect 30 truffles (8 = 30), you can
expect to walk E[X] = B/a = 6000 meters. Again, this is fundamentally similar
to a waiting time problem, where we are measuring the waiting time in terms
of meters traveled.

The shape of the gamma distribution varies from L shaped when 8 is small
to bell shaped when B is large (Figure P3.11, Exercise P3.7). Thus, B is often
called the “shape” parameter for the gamma distribution. In contrast, « is called
the “scale” parameter. Increasing or decreasing « while holding 8 constant does
not change the shape of the distribution.

545
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Figure P3.11: Gamma distribution (Definition
P3.13). The probability density function, f(x), is
plotted for various values of « and 3, holding the
mean value constant at (a) E[X] = 2 and (b) E[X] =
4. When B = 1, the shape of the gamma distribu-
tion is the same as the exponential distribution.
When 8 < 1, the distribution is more L-shaped,
with substantial probability density near zero.
When B > 1, the distribution is more bell-shaped.
Because the same set of 3 values is used in (a)
and (b), the shapes of the curves are the same,
but the horizontal axis has expanded and the
vertical axis has shrunk in (b) because the mean
has doubled.
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Outcome

Because the gamma distribution is so flexible in shape, it is often used to
describe the distribution of an unknown parameter. For example, the gamma
distribution is used in analyzing DNA sequences to describe the variation in
mutation rates among sites. The use of the gamma distribution is not rigor-
ously justified in this case. This application does not involve the sum of wait-
ing times, for example. Instead, the gamma distribution is used as a heuristic
description of what the distribution of substitution rates might look like.
Sequence data can then be used to estimate « and B, providing us with infor-
mation about whether there is a large (8 small) or small (3 large) degree of vari-
ation among sites in mutation rate (Felsenstein 2004; Keightley 1994).

Exercise P3.7:

(a) Calculate the coefficient of variation for the gamma distribution.

(b) Rewrite the probability density function for the gamma distribution
replacing o and B in terms of the mean and coefficient of variation.

(c) What must the coefficient of variation be for the gamma distribution
to reduce to the exponential distribution? Would smaller values of
the coefficient of variation correspond to more L-shaped or more bell-

shaped distributions?
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P3.4.4 Normal (Gaussian) Distribution
Arguably the most important distribution in biology is the normal or
Gaussian distribution:

Definition P3.14a:

The normal distribution is bell-shaped, with a probability density
function that falls off exponentially with the squared distance to
the mean:

o~ = (20%)
fix) = —— for —o = x = o,
\V2mo?

The denominator ensures that the distribution integrates to one. The mean and
variance of the normal distribution are

E{X] = p, (P3.27)
Var[X] = o (P3.28)

When o” is small (low variance), the probability density function is very nar-
row and drops off rapidly in height away from the mean, so that most obser-
vations are expected to lie near the mean. Conversely, when o” is large (high
variance), the probability density function is very broad (Figure P3.12a).

Historically, the normal distribution has appeared in many different con-
texts. The normal distribution was first described by Abraham de Moivre
(1667-1754), who used it to approximate the binomial distribution and to pro-
vide gambling advice to rich patrons. Others, including Pierre Simon de
Laplace (1749-1827) and Carl Friedrich Gauss (1777-1855), noticed that meas-
urement errors tend to be normally distributed. In the nineteenth century,
Adolphe Quetelet (1796-1874) and Francis Galton (1822-1911) observed that
the heights and weights of human and animal populations, along with many
other characteristics, roughly follow a normal distribution.

Why does the normal distribution play such a ubiquitous role? The reason
lies in one of the most important theorems in statistics first developed by
Laplace and known as the central limit theorem.

Rule P3.12: Central Limit Theorem

The sum (or the average) of n independent and identically distrib-
uted random variables tends toward a normal distribution as n
goes to infinity.
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Figure P3.12: Normal distribution. (a) The proba-
bility density function, f(x), of a normal distribu-
tion (Definition P3.14a) is plotted for various
values of the variance, holding the mean value
constant at u = 1. (b) The probability density
function, f(x,y), of a bivariate normal distribution
(Definition P3.14b) is plotted assuming that the
means are u, = 1, u, = 3, that the correlation
between X and Yis p = 0.9, and that the vari-
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ances are g7 = o7 = 1.

| = -
(a) Mean () = 1

Probability density f(x)

(b)

Probability density £(x,y)

Technically, the central limit theorem requires that each random variable fol-
low a distribution with finite mean and variance, as is the case for the distribu-
tions that we have considered. Variants of the central limit theorem have also
been proven relaxing the requirement that each random variable is drawn from
the same distribution and that the random variables are entirely independent of
one another. Basically, as long as enough random variables are combined and
these variables are nearly independent, then the combined effect of the ran-
dom variables looks nearly normal in shape.

The central limit theorem explains why many of the distributions described
in this Primer are, under certain circumstances, bell shaped. First, the binomial
distribution involves summing the outcome of n independent Bernoulli trials.
Thus, the normal distribution provides an excellent approximation for a bino-
mial distribution, as long as n is sufficiently large that multiple successes (n p)
and multiple failures (n (1 — p)) are expected (Figure P3.13). Similarly, the
negative binomial distribution involves summing the waiting times needed
for r events to occur and is nearly normal in shape when r is large (see Figure
P3.5). The same holds for the gamma distribution if we wait for a sum total of
B events to occur in continuous time (see Figure P3.11). Even the Poisson
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0.25
Figure P3.13: Approximating a binomial distribu-
(2 u=3 o>=027 tion with a normal distribution. When the number
0.15 el ‘ of trials, n, is large in a binomial distribution, its

shape is approximately normal. Here we compare
the normal distribution with mean p = n p and
variance o> = np (1 — p) to a binomial distribu-
tion with parameters n and p. The fit is good in

0 1 2 3 4 5 6 7/ 8 9 10 this example even though n is not very large.

n=30,p=0.1

Probability density f(x)

distribution is approximately normal in shape when the total number of events
is expected to be large (see Figure P3.6). As we increase the number of events
being summed, every one of these distributions becomes more bell shaped, that
is, more closely approximated by a normal distribution. These distributions are
never exactly normal. For example, a negative outcome is not possible with
these distributions, whereas negative outcomes are always possible with the
normal distribution. Nevertheless, the discrepancy between the true distribu-
tion and the normal distribution becomes smaller as more random variables are
summed.

The central limit theorem also helps explain why many traits follow a nor-
mal distribution, because such traits are typically influenced by a large number
of factors (genetic and/or environmental). In this case, the random variable that
is being summed (or averaged) is the contribution of each factor to the trait.

An important generalization of the normal distribution is the multivariate
normal distribution. Here we present the two-variable (bivariate) case:

Definition P3.14b:

The bivariate normal distribution is a probability distribution for two random variables. It
is bell shaped for both random variables and again the probability density function falls off
exponentially with the squared distance to the mean of either variable:

= A ) A X = pe\[V T My
o (55 08 ) o
% % X y

2

e =

2mao,a, VN1 = p

for —c=x=wand —x =y =,

Again the denominator ensures that the integral of the distribution over both
variables equals one. The mean and variance of the X variable is calculated just
as it was for a one-variable probability density (i.e., from Definitions P3.9 and
P3.10), only now we must integrate over both x and y. The same is true for the
Y variable. For the bivariate normal, the mean and variance of the two random
variables X and Y are
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E[X] = m,, EIY] = u,, (P3.29)
Vat[X] = o2, Var[Y] = o2 (P3.30)

Now, however, there is an additional parameter, —1 = p = 1, which is known as
the correlation coefficient. Positive values of p mean that larger than average val-
ues of X tend to be associated with larger than average values of Y and vice
versa. Negative values of p mean that larger than average values of X tend to be
associated with smaller than average values of Y and vice versa (Figure P3.12b).
The correlation coefficient is related to the covariance of two random variables
by the equation p = Cov[X,Y |/(o,0,) (Table P3.1).

P3.4.5 Log-Normal Distribution

The log-normal distribution arises when describing the product of a large
number of independent and identically distributed random variables. If ¥V =
Y, Y,---Y, then we expect X = In(Y) to become normally distributed as the
number of variables increases. This follows from the fact that In(Y) = In(Y,) +
In(Y,) + --- + In(Y,) is the sum of a number of random variables. Thus, the
central limit theorem applies to X = In(Y) and says that X tends toward a nor-
mal distribution. We then say that ¥ = ¢* has a log-normal distribution:

Definition P3.15:
The log-normal distribution describes the distribution of a ran-
dom variable Y whose natural logarithm is normally distributed:
o (In(y)—m)?/(25)

= ———— for0 =y =
y V2x s?

The log-normal distribution can be derived from a normal distribution with
mean m and variance s* (Definition P3.14a) by replacing x with In(y) and then
using the fact that dx = d(In(y)) = (1/y) dy.

0.6
< 05 $2=0.25 "
z Y
2 04
3 s2=1
Figure P3.14: Log-normal distribution (Definition é" 0.3 ¢ s2=4
P3.15). The probability density function, f (y), is E A/
plotted for various values of s?, holding constant S 02
m = 1. Note that the mean of the log-normal =
depends on both m and s; for the distributions R 0.1
drawn, the mean is 3.08 (s® = 0.25), 4.48
(s? = 1), and 20.09 (s?> = 4). The mean is much . _ P PO :
larger than you might predict based on these 2 4 6 8

graphs because the tail to the right is long and fat. Outcome
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The mean and variance of the log-normal distribution equal

E|Y] = "0, (P3.31)
Var[Y] = 22— g2m+s (P3.32)

The log-normal distribution is asymmetrical with a long tail extending to the
right, but it becomes more bell shaped as s* decreases (Figure P3.14).

Example

We would expect the abundance of a population to follow a log-normal dis-
tribution if growth rates (i.e., r in the exponential growth model) vary over
time in an additive fashion, because the population size n is proportional to e".
Indeed, population size surveys often reveal log-normal distributions in a vari-
ety of species, from diatoms to birds (Limpert et al. 2001). We would also
expect survival times to be log-normally distributed if several factors have a
multiplicative impact on survival (e.g., increasing or decreasing survival by a
percentage). In fact, survival times after diagnosis with cancer have been
shown to follow a log-normal distribution (Limpert et al. 2001).

P3.4.6 Beta Distribution

For the binomial distribution, we focused on a random variable describing
the number of successes, k, out of n trials, where p and n were the parameters
of the distribution. What if, instead, we wanted a distribution for the proba-
bility of success, p, given that we have observed k successes out of n trials? The
appropriate distribution for the random variable, p, is the beta distribution
witha=k+landb=n—-k + 1:

Definition P3.16:
The beta distribution describes a probability density for a pro-
portion p:

[(a + b)

f0) = Fy gy P - Pt for0=p=1

where a and b are real and positive parameters and I'(a)=
J,20 ey 'dy is the gamma function.

To derive the beta distribution, we start by assuming that the probability density
function for p is proportional to the binomial distribution, n!/(k!(n — k)!) p* (1 —
p)" X In other words, values of the random variable p that are more likely to yield
k successes out of n trials are given greater probability density. Again, we can gen-
eralize this distribution to noninteger parameter values by replacing the binomial
coefficient, n!/(k!(n — k)!) (considered here to be a constant given the data), by a
new constant chosen to ensure that the probability density function integrates
to one. Using Rule P3.11, the constant by which we must divide p(1 —p)"* is
Jp-oP* (1 — p)* % dp. Mathematica comes in handy for this integration and gives

1

/ pi(L — p)y"dp =

p=0

B{sE AN (= k=)
I'(n + 2) ’
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Finally, to obtain Definition P3.16, we rewrite the distribution in terms of the

parameters, a and b, where a = k + 1and b = n — k + 1, as it is more typically

written.

The beta distribution has mean and variance

(see Exercise P3.8).

Var[X] =

E[X] = -

a

a+ b

ab

(@a+ b1 +a-+b)

(R3535)

(P3.34)

The shape of the beta distribution is extremely flexible (Figure P3.15). It is
bell shaped when a and b are similar in magnitude and large. It is a flat line
when a and b are one. It is U shaped when a and b are similar in magnitude
and smaller than one. The beta distribution can even be L shaped when b is
much larger than a or J shaped when a is much larger than b.

(a)

(b)

(c)

Figure P3.15: Beta distribution (Definition P3.16).
The probability density function, f(x), is plotted for
various values of a and b, holding the mean value
constant at (a) £[X] = 1/2, (b) E[X] = 1/6, and
(c) E[X] = 5/6.
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Probability density f{x)
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Example

As we shall see in Chapter 15, the beta distribution arises in genetic models
describing the probability distribution of allele frequencies within a population
(see equation (15.25); Crow and Kimura 1970; Turelli 1981). The most frequent
context in which the beta distribution arises, however, is in Bayesian analysis
where the beta distribution is often used as a prior probability distribution for
parameters that lie between 0 and 1 (see Supplementary Material P3.1).

Exercise P3.8: Use the fact that [L_, p* (1 — p)’ 'dp = ['(a)[(b)/T(a + b)
and I'(a + 1) = al'(a) to find the mean of the beta distribution.

P3.4.7 Dirichlet Distribution

Just as the multinomial distribution generalizes the binomial distribution
for outcomes involving more than two possible states, the Dirichlet distribu-
tion generalizes the beta distribution:

Definition P3.17:
The Dirichlet distribution describes the probability density
function for the proportions p; in each of c discrete categories:

Day + @y - Fa) N o
F F F 1| pzl ...pCL
(a))l(az)---T'(a)

f(pllPZr sy PL) -

forO0=p =1

Here the a; are real and positive parameters (akin to k + 1 in the multinomial
distribution, see Definition P3.5), and the proportions in each state must sum to
one: 217:1 p; = 1. For example, the Dirichlet distribution arises when describing
the frequency distribution of multiple alleles at a locus.

P3.5 The (Insert Your Name Here) Distribution

While we have discussed a number of classic distributions that arise often, it is
important to recognize that there are an unlimited number of probability dis-
tributions. For many problems, the appropriate distribution might be one of
those discussed in this Primer. It is definitely possible, however, that the appro-
priate distribution is a new one. At that point you should take the plunge and
describe your very own distribution. The rules and definitions described in this
Primer allow you to check that your distribution correctly sums to one and to
determine such things as the mean and variance of the distribution.

For example, you might want to model a population in which there are two
types of males, and where females have a preference for one type over the




554 Primer 3

other. To begin, you choose a simple procedure by which temales decide on
their mates. First, a female randomly encounters a male from the population.
If she encounters a type-1 male, she mates with him. If, however, she encoun-
ters a type-2 male, she mates with him with probability &. If she remains
unmated, she tries again, and the same rules apply. However, after two
attempts, the female mates with any male she encounters. Say that you are par-
ticularly interested in knowing how often females mate in one, two, or three
attempts. You could simulate the above process a number of times to answer
this question, but it is much easier to develop the probability distribution.

[f the proportion of males that are type 1 is p, then the probability that a
female mates in the first attempt is P(X = 1) = p + (1 — p) ¢, which we will
define as F. Of the remaining 1 — F females, a similar proportion mates in the
second attempt. Thus, P(X = 2) = (1 — F) F. Any females that remain unmated
then mate at the third attempt, so that P(X = 3) = (1 — F) (1 — F). This com-
pletes our derivation of a new probability distribution:

P(X = 1) = F,
P(X=2)=(1-FF, (P3.35)
P(X =3)=(1 - F~

These probabilities sum to one and so obey Rule P3.10. The mean can be cal-
culated using Definition P3.2 as

EX]=PX =1) + 2P(X =2) + 3P(X = 3
[X] = M ) ( ) ( ) (23.36)
=3 - 3F+ F2

If males of the preferred type are common (p high) or if females are inclined to
mate even with males of the second type (¢ high), then F = p + (1 — p) ¢ will
be near one and the mean will be near one (Figure P3.16). After a little bit of
algebra it is also possible to show that the variance of this distribution equals
Var[X] = F(1 — F) (5 — 5F + F?).

Equation (P3.35) describes the probability that a particular female mates at
the first, second, or third attempt. We can use these probabilities within the
multinomial distribution (Definition P3.2), however, to describe the number of
females mating at the first, second, or third attempt within a population of n
females. This would be a lot faster than simulating each female as she chooses
her mate, especially if there were thousands of females!

The main distributions described in this Primer are summarized in Tables
P3.2 (discrete probability distributions) and P3.3 (continuous probability distri-
butions). These tables provide a quick reference describing the probability
distribution, as well as its mean and variance. In addition, moment generating
functions are given where they exist and are simple enough to be useful. As
described in Appendix 5, moment generating functions provide a quick and
relatively painless method for finding higher moments of a distribution. Finally,
Tables P3.2 and P3.3 provide one-sentence descriptions of when we might
expect each distribution to apply. Remember, however, that probability distri-
butions are not written in stone. If you are interested in a process that is not well
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described by any probability distribution that you know, forge ahead and
develop the appropriate distribution on your own. Who knows, you might go
down in history as the person for whom a probability distribution is named!

Exercise 3.9: In equation (P3.35), we described the probability distribution for the
number of mating attempts made by a female before she mates. Calculate the
overall probability that she mates with a male of type 1. Relate this result to
the mean number of trials (P3.36). Use the complement rule (Rule P3.2)
to determine the probability that she mates with a male of type 2.

0.8
0.6
0.4

Probability

02 0.16

P(X=3)=0.04

(b)

0.8
0.6

Figure P3.16: Mating probabilities. The probability
that a female mates on her nth encounter with a
male, according to the probability distribution
defined by equation (P3.35). In (a), females are
likely to mate with a randomly encountered male
(F = 0.8), while in (b), females are more choosy

0.4

Probability

P(X=1)=02

0.2 P(XZ) 0.16

——— : :
Mating attempt (F=0.2).

i d
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TABLE P3.2
Discrete probability distributions. Moment generating functions MGF(z) are
given where they exist in a useful form (see Appendix 5).

Binomial Distribution Parameters: n, p
Definition P3.4  P(X = k) = (Z)pk(l — p)rk fork=0,1,2,...,n

E[X] = np
Var[X] = np(1—p)
MGE[z] = (1 — p + &p)"
Circumstances: The binomial arises when there are n independent events, each

of which can have two outcomes (“success” or “failure”). The probability of
observing a total of k successes is P(X = k).

Hypergeometric Distribution. Parameters: N, p, n, where N, = p N and

N, = (1 — N
0 (%Y, )
k n— k

Definition P3.6 P(X = k) = N fork =0,1,2, ..., min(n, N,)
()
EX]=np
N —n
Var[X] = np(1 - p) 7

Circumstances: The hypergeometric describes the probability of observing k
successes when n objects are sampled without replacement from a total pool
of N objects, of which a fraction, p, represent a successful outcome.

Geometric Distribution. Parameter: p

Definition P3.7 PX=K)=p(l—p fork = 1,28, . :
1
BX) =
T =
Var[X] = ( ZP)
¥
MGF = cp
[Z] - 1— (1 _p)ez

Circumstances: The geometric arises when measuring the number of
independent trials, k, until the first success.

Negative Binomial Distribution. Parameters: r, p.

Definition 3.8 P(X=k)=<];:11>p’(1—p)k’r FOLK =il G 2
r
E[X] = -
[X] ’
1__
Var[X]=L£)

pZ

e*p r
mert) - (== 55)

Circumstances: The negative binomial arises when measuring the number of
independent trials, k, until the rth success.
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Poisson Distribution. Parameter: p

e H
Definition P3.9 P(X = k) = "“kTM" fork =0,12, ...
Elbdli=
Var[X] = u

MGEF[z] = eV

Circumstances: The Poisson arises when measuring the number of independent
events, K, that occur in a certain period (or area) of observation. The Poisson
also arises as an approximation to the binomial when # is large and p is small,
in which case the mean and variance are well approximated by u = np.

TABLE P3.3
Continuous probability distributions. Moment generating functions MGF(z)
are given where they exist in a useful form (see Appendix 5).

Uniform Distribution. Parameters: min, max

il
Definition P3.11 ) = for min = x = max
max — min
E[X] = max + min
2
o (max — min)?
ar[X] = o
MGHz] = ———%

~ (max — min) z

Circumstances: The uniform distribution arises whenever you are interested in
describing where an event occurs for events that have the same chance of
occurring anywhere between two points (min and max).

Exponential Distribution. Parameters: «

Definition P3.12 fx) = ae™ for0 = x =
1
E[X] = —
1
Var[x]i=—
(¢4
a
MGE|z] = —— forz < a
a — z

Circumstances: The exponential distribution arises when measuring the amount
of time that passes, x, until an event occurs, measured in continuous time.

Gamma Distribution. Parameters: «, 8

B
Definition P3.13 f(x) = ﬁﬁ—)xﬁ*leﬂx for0 = x = =
B
Var[X] = Ez
o
o B
MGEF(z] = ( Z) forz < «
o

(continued)
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TABLE P3.3 continued

Circumstances: The gamma distribution arises when measuring the amount of
time that passes, x, until 8 independent events occur, measured in
continuous time.

Normal Distribution. Parameters: u, o°

(x—p)?/(207)
Definition P3.14a f(x) = = — for —oo = x =
\ 2mwa*
E[X] = n
VarfXil = a*

zp+o’/2
eiH

MGF|z]

Circumstances: The normal distribution arises when several factors sum (or
average) together to influence an outcome.

Bivariate Normal Distribution. Parameters: u,,u,,0,0y,p
exp| 52— ]
2(1 = p?)
2:75.0,,0;

= p’

X — e \2 Al A X — e \[(V T &
where z = (—L> =5 (}—~—)> = Zp( i >< y) for—o=x=wx
o a, o o,

and —©» =y =

Definition P3.14b: flx,y) =

E[X] = p, E[Y] = p,
Var[X] = o3, Var[Y] = o;, Correlation[X,Y] = p

Log-normal Distribution. Parameters: m, s>

e~ (In(y)=m)?/(25%)
Definition P3.15 fly) = for0=y=w

y V2 s?

£17) = 1o )

Var[Y] = dln(l + ;—22)

Circumstances: The log-normal distribution arises when several factors have -
multiplicative effects on an outcome.

Beta Distribution. Parameters: a, b

D sgs - . F(a + b) a—1 b-1
efinition P3.16 f(p) = mﬂ (8= p)’=, for0=p=1
a
A=y
Var(X] ab

T @-b’(1+a-+b

Circumstances: The beta distribution arises when estimating an unknown
probability or proportion, p.
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Further Reading

For an introductory text on probability theory, consult

¢ Pitman, J. 1997. Probability. Springer-Verlag, Berlin.

e Larsen, R. J. and M. L. Marx. 2001. An Introduction to Probability and Its Applications,
3rd ed. Prentice-Hall, Englewood Cliffs, NJ.
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e Taylor, H. M. and S. Karlin. 1998. An [ntroduction to Stochastic Modeling, 3rd ed.

Academic Press, New York.

For a more advanced text on probability theory, consult
e Rice, J. A. 1995. Mathematical Statistics and Data Analysis, 2nd ed. Duxbury Press,
Belmont, Calif.
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Answers to Exercises

Exercise P3.1

(a) According to Rule P3.4, if the two events are independent, P(“tree has
fungal rot” N “tree has an owl nest”) = (1/100)(1/1000) = 10°. According to
Rule P3.5, if the two events are mutually exclusive, P(“tree has fungal rot” N
“tree has an owl nest”) = 0.

(b) According to Rule P3.4 for independent events, P(“blood type O” N
“Rhesus negative”) = (0.46)(0.16) = 0.0736. That is, roughly 7% of the popu-
lation is expected to be O—.

(¢) According to Rule P3.5 for mutually exclusive events, P(“blood type O” N
“blood type A”) = 0.46 + 0.40 = 0.86. That is, the probability that the donor
is acceptable is 86%.
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(d) According to Rule P3. 4 for independent events, P(“first study is signifi-
cant” U “second study is significant”) = (0.05) + (0.05) — (0.05)*> = 0.0975. Thus,
when two studies are performed, there is nearly a 10% chance that at least one
of the studies will conclude, incorrectly, that a true hypothesis is false. An alter-
native way to reach the same answer is by using the complement rule P3.2. The
probability that at least one of the two studies obtains a significant result is equal
to 1 — P(“neither study obtains a significant result”). Because the two studies are
independent, we can use Rule P3.4 to calculate P(“neither study obtains a
significant result”) = (1 — 0.05). This second method gives the same probability,
1 — (1 — 0.05)? = 0.0975, that one or both of the results is significant.

Exercise P3.2

(a) We start by rewriting the question in terms of probability statements. We
want to know P(brown hair | green eyes) given that P(green eyes) = 0.10,
P(brown hair) = 0.75, P(brown hair N green eyes) = 0.09. Equation (P3.1a) then
can be used to write P(brown hair N green eyes) = P(brown hair | green eyes)
P(green eyes). Thus, P(brown hair | green eyes) = 0.09/0.10 and there is a 90%
chance of having brown hair given that you have green eyes.

(b) Using Bayes’ Rule P3.7, P(taster | carrier) = P(carrier | taster) P(taster)/
P(carrier), which equals (1) (0.7)/(0.8) = 0.875.

(c) Using Bayes’ Rule P3.7, P(death due to lung cancer | not a smoker) = P(not
a smoker | death due to lung cancer) P(death due to lung cancer) / P(not a smoker).
Because P(not a smoker) is the complement of P(smoker), we can use the comple-
ment Rule P3.2 to write P(not a smoker) = 1 — P(smoker). The complement rule
also applies to conditional statements, so that P(not a smoker | death due to lung
cancer) = 1 — P(smoker | death due to lung cancer). Altogether, we get the for-
mula: P(death due to lung cancer | not a smoker) = (1 — P(smoker | death due to
lung cancer)) P(death due to lung cancer) /(1 — P(smoker)). Using the data, the risk
of death due to lung cancer among non-smokers is P(death due to lung cancer
| not a smoker) = (1 — 0.9) (0.3) /(1 — 0.5) = 0.06.

Exercise P3.3

(a) The expected value of X? equals E[X?] = 0> X P(X =0) + I’ X P(X = 1) =
0% X (1 — p) + 1% X (p) = p. Subtracting off the square of the mean of a Bernoulli
trial, u? = p?, gives the variance, Var[X] = E[X?]—u? = p — p? which again equals
pa-p).

(b) With two Bernoulli trials, the probability of no successes is P(X = 0) =
(1 — p)? (getting a failure on the first trial and then independently getting
a failure on the second trial), the probability of getting a single success is
PX=1)=pA—-p)+(1—-pp=2p (1 — p) (having a success followed by a fail-
ure or vice versa), and the probability of getting two successes, is P(X = 2) = p*.
The sum of these probabilities is (1 — p)*> + 2 p (1 — p) + p?, which factors to
one, as it should. The expected outcome is given by the formula, E[X] = 0 X
PX=0)+1XxPX =1)+ 2 X PX = 2), which evaluates to 0 X (1 — p)* + 1 X 2p
(1 = p) + 2 X p*, which equals 2p. The variance of the outcome is slightly eas-
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ier to calculate using Var|[X] = E[X?]—u?. First, we calculate the expected value
of X E[X)] = 0> X P(X =0) + 1> X P(X = 1) + 2> X P(X = 2), which equals
2p(1—=p) + 4p>. We then subtract off u?, where u is the mean of two Bernoulli
trials, which we have already calculated as u = E[X] = 2p, leaving us with
Var[X] = 2 p (1-p).

(c) Because E[X] = E[Y] = p for a single Bernoulli trial, the expected outcome
from two independent Bernoulli trials is E[X + Y] = E[X] + E[Y] = 2p. Because
Var[X] = Var[V] = p(1 — p) for a single Bernoulli trial, Var[X + Y] = Var[X] +
Var[Y] = 2 p (1 — p). These results are identical to those obtained in (b).

Exercise P3.4

Using the fact that the variance of a sum is the sum of the variance for inde-
pendent random variables, Var[X + Y] = n; p, (1 — p,) + n, p, (1 — p,). For gen-
eral values of p, and p,, Var[X + Y] cannot be factored and so cannot be written
in the form np (1 — p). Only if the probability of success is the same for each
trial, does the variance factor into the form of the variance of a binomial dis-
tribution, n p (1 — p), where n = (n, + n,) and p = p, = p,. When n; = 100
and p, = 1, Var[X] = 0. Similarly, when n, = 100 and p, = 1, Var[Y] = 0. In
this example, we would always observe 100 failures and 100 successes, and
Var[X + Y] = 0, which is much lower than the expected variance of a binomial,
np (1 — p) =50, for the same total number of events (n = 200) and average
probability of success (p = 1/2).

Exercise P3.5

According to the exponential distribution, the probability, P(k—1 < X < k),
that an event occurs between k — 1 and k is given by [X_,_jae™™ = —e % +
e k=1 Replacing e with 1 — p gives —(1-p)* + (1—p)*"!, which factors to
p(1—p)*'. This is the same formula as the probability that an event is first
observed at time step k in a geometric distribution (Definition P3.7).

Exercise P3.6

(a) The mean of the exponential distribution is given by (Definition
P3.10a)

o

w=E[X]= /xae_‘”‘th
0

Integrating by parts (Rule A2.29 from Appendix 2) with u = x and v = —e™*,
Ix ae®dx = —x e —e"**/a. In the limit as x goes to positive infinity the
indefinite integral goes to zero (both x e”** and e ** approach 0 as x increases),
while at x = 0 the indefinite integral becomes —1/a. Thus the definite integral
from x = 0 to infinity is u = 1/a.
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(b) The variance of the exponential distribution is given by (Definition
P3.10b)

Integrating by parts (Rule A2.29), starting with u = x> and v = —¢™*, [ X ae ™
dy = —x? ¢ — [ 2 x ¢ dx. From part (a), we know that (2/a) [xae ** dx =
(2/a) (—x e”** — e”**/a). Evaluating the definite integral then gives E[X?] = 2/a?, so
that Var[X] = 2/a® —1/a® = 1/a>.

(c) The mean is given by (d(MGF(z))/dz)l,_,, which equals a/(a — 2)*,_, = 1/a.
The variance can be calculated using Var[X] = E[X?] — u* (Definition P3.10b).
E[X?] is given by (d*2(MGF(z))/dz?)|,_,, which equals 2a/(a — 2)*l,_, = 2/a?. Thus
the variance equals 2/a* — (1/a)* = 1/a?. Alternatively, the variance can be cal-
culated directly from the central moment generating function CMGF(z) = ¢~
al(a—2z) as (A2 (CMGF(z))/dz%),—,, which also equals 1/a?.

Exercise P3.7
Var[X] 1
EXP Vp
(b) Rearranging (a), 8 = 1/CV? and thus @ = 1/(wCV?). This allows us to
rewrite the probability density function for the gamma distribution as

(a) CV =

(;LeCVZ)’(l/CVZ)
1
I
(o)

(c) The coefficient of variation for an exponential distribution equals 1.
Smaller values of CV (i.e., larger values of 8) correspond to more bell-shaped
distributions. As the coefficient of variation goes to zero, the probability den-
sity function narrows, and most outcomes are observed near the mean, w.

KAV =1 o= /( CV3).

flx) =

Exercise P3.8

Because fplzo P l(1=p)P ' dp = T(@I(b)/T(a + b), it must be the case that
fpl:() ppt (1-p)tdp =T(a + HIB)/T(@ + b + 1). Thus, the expectation of
the beta distribution is E[X] = fplzop foydp=T@+ DTG @+ b)/T(a+b+1)
I'(a) I'(b). Because (@ + 1) = aTl'(a)andT'(a + b + 1) = (a + b)I'(a + b), this reduces
to E[X] = a/(a + b).

Exercise P3.9

In each trial a female has a chance p of encountering a male of type 1. The
chance that she has not mated before the kth trial is (1 — F)*"'. Multiplying
these two together and summing over all possible numbers of trials, we find
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that the probability that a female mates with a male of type 1isp + p (1 — F) +
p (1 — F)?, which simplifies to p (3 — 3 F + F?). This equals p times the mean
number of trials, which in hindsight, makes sense. Because there are only two
mutually exclusive outcomes (she mates with a male of type 1 or with a male
of type 2), the probability that she mates with a male of type 2is 1 — p (3 —
3 F + F?). Note that if we ignore the mechanics behind how a choice was made,
whether a female mates with a male of type 1 or type 2 is described by a
Bernoulli trial.




