Saneamento

Saneamento Básico

Saneamento Ambiental

Etapas do Tratamento

Metais Pesados

Tratamento de Efluentes

Tratamento de Efluentes Industriais

O que é saneamento?

- Saneamento é o conjunto de medidas, visando a preservar ou modificar as condições do ambiente com a finalidade de prevenir doenças e promover a saúde.
- Saneamento básico se restringe ao abastecimento de água e disposição de esgotos, mas há quem inclua o lixo nesta categoria.
- Outras atividades de saneamento são:
- controle de animais e insetos,
- saneamento de alimentos, escolas, locais de trabalho e de lazer e habitações.
- Normalmente qualquer atividade de saneamento tem os seguintes objetivos:
- controle e prevenção de doenças,
- melhoria da qualidade de vida da população,
- melhorar a produtividade do indivíduo e facilitar a atividade econômica.

Abastecimento de água

- A água própria para o consumo humano chama-se água potável.
- Para ser considerada como tal ela deve obedecer a padrões de potabilidade.
- Se ela tem substâncias que modificam estes padrões ela é considerada poluída.
- As substâncias que indicam poluição por matéria orgânica são:
- compostos nitrogenados,
- oxigênio consumido e cloretos.
- Para o abastecimento de água, a melhor saída é a solução coletiva, excetuando-se comunidades rurais muito afastadas.

Distribuição

- As redes de abastecimento funcionam sob o princípio dos vasos comunicantes.
- A água necessita de tratamento para se adequar ao consumo.
- Mas todos os métodos têm suas limitações, por isso não é possível tratar água de esgoto para torná-la potável.
- Os métodos vão desde a simples fervura até correção de dureza e corrosão.

- Despejos são compostos de materiais rejeitados ou eliminados devido à atividade normal de uma comunidade.
- O sistema de esgotos existe para afastar a possibilidade de contato de despejos, esgoto e dejetos humanos com a população, águas de abastecimento, vetores de doenças e alimentos.
- O sistema de esgotos ajuda a reduzir despesas com o tratamento tanto da água de abastecimento quanto das doenças provocadas pelo contato humano com os dejetos, além de controlar a poluição das praias.

- O esgoto (também chamado de águas servidas) pode ser de vários tipos:
- sanitário (água usada para fins higiênicos e industriais),
- sépticos (em fase de putrefação),
- pluviais (águas pluviais),
- combinado (sanitário + pluvial),
- cru (sem tratamento),
- fresco (recente, ainda com oxigênio livre).

 Existem soluções para a retirada do esgoto e dos dejetos, havendo ou não água encanada. Existem três tipos de sistemas de esgotos:

- Sistema unitário: é a coleta do esgotos pluviais, domésticos e industriais em um único coletor. Tem custo de implantação elevado, assim como o tratamento também é caro.
- Sistema separador: o esgoto doméstico e industrial ficam separados do esgoto pluvial. É o usado no Brasil.

O custo de implantação é menor, pois as águas pluviais não são tão prejudiciais quanto o esgoto doméstico, que tem prioridade por necessitar tratamento.

Assim como o esgoto industrial nem sempre pode se juntar ao esgoto sanitário sem tratamento especial prévio.

 Sistema misto: a rede recebe o esgoto sanitário e uma parte de águas pluviais.

- A contribuição domiciliar para o esgoto está diretamente relacionada com o consumo de água.
- As diferenças entre água e esgoto é a quantidade de microorganismos no último, que é tremendamente maior.
- O esgoto não precisa ser tratado, depende das condições locais, desde que estas permitam a oxidação.
- Quando isso não é possível, ele é tratado em uma Estação de Tratamento de Água Residual (ETAR).

Disposição do Lixo

- O lixo é o conjunto de resíduos sólidos resultantes da atividade humana. Ele é constituído de substâncias putrescíveis, combustíveis e incombustíveis.
- O lixo tem que ser bem acondicionado para facilitar sua remoção. As vezes, a parte orgânica do lixo é triturada e jogada na rede de esgoto.
- Se isso facilita a remoção do lixo e sua possível coleta seletiva, também representa mais uma carga para o sistema de esgotos.
- Enquanto a parte inorgânica do lixo vai para a possível reciclagem, a orgânica pode ir para a alimentação dos porcos. O sistema de coleta tem que ter periodicidade regular, intervalos curtos, e a coleta noturna ainda é a melhor, apesar dos ruídos.
- O lixo não deve ser lançado em rios, mares ou a céu aberto, pode ser enterrado, ir para um aterro sanitário (o mais indicado) ou incinerado (queimado).

Saneamento Ambiental

- Investimentos em saneamento, principalmente no tratamento de esgotos, diminui a incidência de doenças e internações hospitalares e evita o comprometimento dos recursos hídricos do município.
- A percepção de que a maior parte das doenças são transmitidas principalmente por meio do contato com a água poluída e esgotos não tratados levou os especialistas a procurar as soluções integrando várias áreas da administração pública.
- Atualmente, emprega-se o conceito mais adequado de saneamento ambiental. Com o crescimento desordenado das cidades, no entanto, as obras de saneamento têm se restringido ao atendimento de emergências: evitar o aumento do número de vítimas de desabamento, contornar o problema de enchentes ou controlar epidemias.
- O saneamento é de responsabilidade do município. No entanto, em virtude dos custos envolvidos, algumas das principais obras sempre foram administradas por órgãos estaduais ou federais e quase sempre restritas a soluções para o problema como enchentes.

- Ainda que só 0,1% do esgoto de origem doméstica seja constituído de impurezas de natureza física, química e biológica, e o restante seja água, o contato com esses efluentes e a sua ingestão é responsável por cerca de 80% das doenças e 65% das internações hospitalares.
- Atualmente, apenas 10% do total de esgotos produzido recebem algum tipo de tratamento, os outros 90% são despejados "in natura" nos solos, rios, córregos e nascentes, constituindo-se na maior fonte de degradação do meio ambiente e de proliferação de doenças.

Principais doenças resultantes da ausência de saneamento.

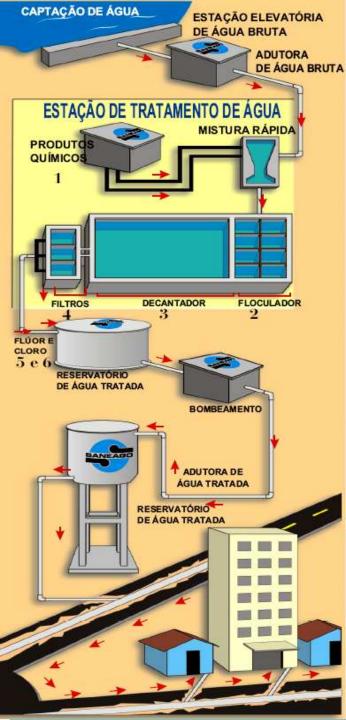
Doença	Agente causador	Forma de contágio
Amebíase ou disenteria amebiana	Protozoário Entamoeba histolytica	Ingestão de água ou alimentos contaminados por cistos
Ascaridíase ou lombriga	Nematóide Ascaris lumbricoides	Ingestão de agua ou alimentos contaminados por ovos
Ancilostomose	Ovo de <i>Necator americanus</i> e do <i>Ancylostoma duodenale</i>	A larva penetra na pele (pés descalços) ou ovos pelas mãos sujas em contato com a boca
Cólera	Bactéria Vibrio cholerae	Ingestão de água contaminada
Disenteria bacilar	Bactéria <i>Shigella</i> sp	Ingestão de água, leite e alimentos contaminados
Esquistossomose	Asquelminto Schistossoma mansoni	Ingestão de água contaminada, através da pele
Febre amarela	Vírus <i>Flavivirus</i> sp	Picada do mosquito <i>Aedes aegypti</i>
Febre paratifóide	Bactérias Salmonella paratyphi , S. schottmuelleri e S. hirshjedi	Ingestão de água e alimentos contaminados, e moscas também podem transmitir
Febre tifóide	Bactéria Salmonella typhi	Ingestão de água e alimentos contaminados
Hepatite A	Vírus da Hepatite A	Ingestão de alimentos contaminados, contato fecal-oral
Malária	Protozoário <i>Plasmodium</i> ssp	Picada da fêmea do mosquito <i>Anopheles</i> sp
Peste bubônica	Bactéria Yersinia pestis	Picada de pulgas
Poliomielite	Vírus <i>Enterovirus</i>	Contato fecal-oral, falta de higiene
Salmonelose	Bactéria Salmonella sp	Animais domésticos ou silvestres infectados
Teníase ou solitária	Platelminto <i>Taenia solium</i> e <i>Taenia saginata</i>	Ingestão de carne de porco e gado infectados

SOBREVIVÊNCIA DE MICRORGANISMOS

ORGANISMOS	MEIO	TEMPO DE SOBREVIVÊNCIA (DIAS)
Coliformes	Solo	38
	Vegetais	35
	Grama	06-34
Estreptococo	Solo	35-63
E. Fecal	Solo	26-77
Salmonelas	Solo	15->280
	Vegetais e frutos	03-49
	Grama	12->42
Salmonela typhi	Solo	01-120
	Vegetais	01-68
Shi gella	Grama	42
-	Vegetais	02-10
	Em água contendo	160
	húmus	
Bacilo da Tuberculose	Solo	>180
Vibrião do Cólera	V egetais e frutas	01-29
	Água e esgoto	05-32
Leptospira	Solo	15-43
	Água	05-32
	Esgoto	30
Cistos de <i>Entamoeba</i>	Solo	06-08
histolytica	V ege tais	01-03
	Água	08-40
Enterovírus	Solo	08
	Vegetais	04-06
Vírus da Poliomielite	Água poluída a 20°C	20
Ovos de <i>Ascaris</i>	Solo	Acima de 7 anos
	Vegetais e frutas	27-35
Tarvas de	Solo	42
Ancilostomídeos		
Cistos de parasitas	Feno seco	Poucos meses
encontrados em figado	Feno seco	Cerca de um ano
de ovelhas	inadequadamente	

Fonte: BURGE & MARSH (1978)

 O esgotamento sanitário requer não só a implantação de uma rede de coleta, mas também um adequado sistema de tratamento e disposição final. Alternativas de coleta mais baratas que as convencionais vêm sendo implementadas em algumas cidades brasileiras, como o sistema condominial.


Quanto ao tratamento, há várias opções atualmente disponíveis que devem ser avaliadas segundo critérios de viabilidade técnica e econômica, além de adequação às características topográficas e ambientais da região. Dependendo das necessidades locais, o tratamento pode se resumir aos estágios preliminar, primário e secundário. No entanto, quando o lançamento dos efluentes tratados se der em corpos d'água importantes para a população, seja porque deles se capta a água para o consumo, seja porque são espaços de lazer, recomenda-se também o tratamento terciário seguido de desinfecção, via cloração das águas residuais.

O tratamento preliminar se dá por meio de grades e caixas de areia, visando à retenção dos sólidos em suspensão (galhos e demais materiais mais grosseiros, como terra, areia e gordura decantáveis) que deve ser posteriormente conduzido para aterros sanitários. O tratamento primário é a decantação simples por meio da ação da força da gravidade ou por precipitação química, o que requer o uso de equipamentos. Nesse estágio é gerado o lodo primário que deve ser manuseado com cuidado e tratado por processos de secagem ou incineração antes da sua disposição no solo. No tratamento secundário são removidos os sólidos finos suspensos que não decantam, e são digeridos por bactérias.

Conduzido pela administração pública municipal, o saneamento ambiental é uma excelente oportunidade para desenvolver instrumentos de educação sanitária e ambiental, o que aumenta sua eficácia e eficiência. Por meio da participação popular ampliam-se os mecanismos de controle externo da administração pública, concorrendo também para a garantia da continuidade na prestação dos serviços e para o exercício da cidadania.

 Apesar de requerer investimentos para as obras iniciais, as empresas de saneamento municipais são financiadas pela cobrança de tarifas (água e esgoto) o que garante a amortização das dívidas contraídas e a sustentabilidade a médio prazo. Como a cobrança é realizada em função do consumo (o total de esgoto produzido por domicílio é calculado em função do consumo de água), os administradores públicos podem implementar políticas educativas de economia em épocas de escassez de água e praticar uma cobrança justa e escalonada.

 O tratamento de água é iniciado nas barragens, através de um serviço de proteção aos mananciais que tem como objetivo principal, evitar a poluição da água por detritos, impurezas e mesmo lançamentos de origem doméstica, agrícola ou industrial, que desta ou daquela maneira, alterem a qualidade dos mesmos. Um serviço de hidrobiologia, controla o crescimento excessivo de algas e outros microorganismos, através de análises de rotina, onde há dado o brado de alerta, quando o mesmo atinge um número superior a 1000 microorganismos/cm3; é feito, nesses casos, uma desinfecção do manancial com sulfato de cobre, ou hipoclorito de sódio a depender da sensibilidade das algas a este ou aquele algicida. Após ser captada nos mananciais e chegar à estação de tratamento, a água recebe tratamentos diversos enumerados a seguir:

- 1 Aplicação de Cal e Sulfato de AluDE ÁGUA BRUTA

 mínio, objetivando principalmente a
 correção do pH e coagulação das partículas de impurezas.
 - 2 Por agitação e sob ação do Sulfato de Alumínio as partículas formam flocos.
 - 3 Os flocos sendo mais pesados que a água depositam-se no fundo do tanque.
 - 4 Constituídos por camadas de areia e pedregulhos realizam a filtragem da água retendo as impurezas que não sedimentaram nos decantadores.
 - 5 Adição de Cloro para eliminação dos microorganismos.
 - 6 Aplicação de Flúor como preventivo às cáries dentárias.

1. Floculação

 Floculação é o processo no qual a água recebe substâncias químicas, que pode ser o sulfato de alumínio, sulfato ferroso, entre outras. Este produto faz com que as impurezas da água reajam com a substância química, formando compostos mais pesados, flocos, para serem facilmente removidos no processo seguinte.

2. Decantação

 Na decantação, como os flocos de sujeira são mais pesados do que a água, caem e se depositam no fundo do decantador. O período médio de retenção da água nesses tanques é de três horas.

3. Filtração

 Nesta fase, a água passa por várias camadas filtrantes, compostas por areias de granulometria variada, onde ocorre a retenção dos flocos menores que não ficaram na decantação. A água então fica livre das impurezas. Estas três etapas: floculação, decantação e filtração recebem o nome de clarificação. Nesta fase, todas as partículas de impurezas são removidas deixando a água límpida. Mas ainda não está pronta para ser usada. Para garantir a qualidade da áqua, após a clarificação é feita a desinfecção.

4. Cloração

 A cloração consiste na adição de cloro na água clarificada. Este produto é usado para destruição de microorganismos presentes na água, que não foram retidos na etapa anterior. O cloro é aplicado em forma de gás ou em soluções de hipoclorito, numa proporção que varia de acordo com a qualidade da água e de acordo com o cloro residual que se deseja manter na rede de abastecimento. O cloro é utilizado para desinfecção, para reduzir gosto, odor e coloração da água, e é considerado indispensável para a potabilização da água. O cloro é um produto perigoso e exige cuidado no seu manuseio. A associação do cloro com algumas substâncias orgânicas, os chamados trialometanos, ou compostos orgânicos clorados, podem afetar o sistema nervoso central, o fígado e os rins, e também é conhecido como um composto cancerígeno, teratogênico e abortivo.

5. Fluoretação

 A fluoretação é uma etapa adicional. O produto aplicado tem a função de colaborar para redução da incidência da cárie dentária. O flúor é aplicado na água usando como produtos fluossilicato de sódio ou ácido fluossilicico.

6. Análises laboratoriais

 Cada Estação de Tratamento de Água (ETA) possui um laboratório que processa análises e exames físico-químicos e bacteriológicos destinados à avaliação da qualidade da água, desde o manancial até o sistema de distribuição. Além disso, pode existir um laboratório especial que faz a aferição de todos os sistemas e também realiza exames como a identificação de resíduos de pesticidas, metais pesados e plâncton. Esses exames são feitos na água bruta, durante o tratamento e em pontos da rede de distribuição, de acordo com o que estabelece a legislação em vigor.

7. Bombeamento

 Concluído o tratamento, a água é armazenada em reservatórios e segue até as residências através de canalizações.

Tubulações das residências

Antigamente, eram usadas tubulações de chumbo e ferro nas residências. Esses materiais provocavam inúmeros problemas, como: vazamentos, deterioração dos equipamentos e da qualidade da água, contaminação humana. Atualmente, esses materiais foram substituídos pelo PVC (Policloreto de Vinila), pois é considerado mais adequado, facilita a instalação, os reparos e provoca menos vazamentos. No entanto, há uma séria polêmica sobre este material, considerado uma das substâncias mais tóxicas produzidas pelo homem. Existem intensas pesquisas sobre o PVC. Segundo alguns pesquisadores, as tubulações em PVC (não somente as tubulações, mas outros produtos de PVC) representam um enorme perigo à saúde. É o único plástico que não é produzido unicamente a partir do petróleo. É fabricado a partir da mistura de sal marinho (57%) e petróleo (eteno, 43%).

A produção de PVC é a fonte principal de duas substâncias químicas conhecidas por provocarem disfunções hormonais: a dioxina e o ftalatos. Essas substâncias provocam a diminuição da produção de esperma e outros problemas reprodutivos, como: endometriose, câncer de mama, de próstata e vesícula e repressão do sistema imunológico. A dioxina é produzida e liberada durante a produção do PVC e é muito tóxica.

- Os despejos de resíduos industriais são as principais fontes de contaminação das águas dos rios com metais pesados. Indústrias metalúrgicas, de tintas, de cloro e de plástico PVC (vinil), entre outras, utilizam mercúrio e diversos metais em suas linhas de produção e acabam lançando parte deles nos cursos de água.
- Outra fonte importante de contaminação do ambiente por metais pesados são os incineradores de lixo urbano e industrial, que provocam a sua volatilização e formam cinzas ricas em metais, principalmente mercúrio, chumbo e cádmio.

- Os metais pesados não podem ser destruídos e são altamente reativos do ponto de vista químico, o que explica a dificuldade de encontrá-los em estado puro na natureza.
- Normalmente apresentam-se em concentrações muito pequenas, associados a outros elementos químicos, formando minerais em rochas. Quando lançados na água como resíduos industriais, podem ser absorvido pelos tecidos animais e vegetais.

- Uma vez que os rios deságuam no mar, estes poluentes podem alcançar as águas salgadas e, em parte, depositar-se no leito oceânico.
- Além disso, os metais contidos nos tecidos dos organismos vivos que habitam os mares acabam também se depositando, cedo ou tarde, nos sedimentos, representando um estoque permanente de contaminação para a fauna e a flora aquáticas.

- Estas substâncias tóxicas também depositam-se no solo ou em corpos d'água de regiões mais distantes, graças à movimentação das massas de ar.
- Assim, os metais pesados podem se acumular em todos os organismos que constituem a cadeia alimentar do homem. É claro que populações residentes em locais próximos a indústrias ou incineradores correm maiores riscos de contaminação.

- Os metais pesados podem ser eliminados da água através de um tratamento específico.
- Quando detectados na água "in natura", é feito um pré-tratamento também com substâncias químicas, formando também compostos mais pesados, que se depositam no fundo dos tanques de tratamento.
- Após esta etapa, a água segue para o tratamento tradicional.

Poluição e tratamento de efluentes

- O esgoto é tratado nas Estações de Tratamento de Efluentes e o tipo de tratamento varia de acordo com a região.
- A água resultante desse tratamento pode ser reutilizada para fins não nobres, como, por exemplo, alguns usos industriais.
- Quando não reutilizada, é lançada diretamente nos rios.
- No Brasil, são despejados diariamente nos córregos e rios cerca de 10 bilhões de m³ de esgoto.
- Apenas 4% recebem algum tipo de tratamento.

Fase Líquida

1. Tratamento preliminar

O esgoto bruto atravessa grades de diversos tamanhos, que retêm os materiais presentes, como latas, papelão, estopas e trapos. Na seqüência, uma caixa faz a remoção da areia contida no esgoto.

• 2. Tratamento primário

O esgoto líquido passa por um processo de decantação, em que são separados sedimentos, gorduras e óleos. O líquido resultante do decantador primário passa pelo tanque de aeração. Combinandose a agitação do esgoto com a injeção de ar, desenvolve-se uma massa de microorganismos chamada "lodos ativados". Os microorganismos alimentam-se da matéria orgânica e se proliferam. Em um novo processo de decantação (secundário), é retirado o lodo ativado e o líquido é devolvido ao meio ambiente livre da sujeira.

Fase Sólida

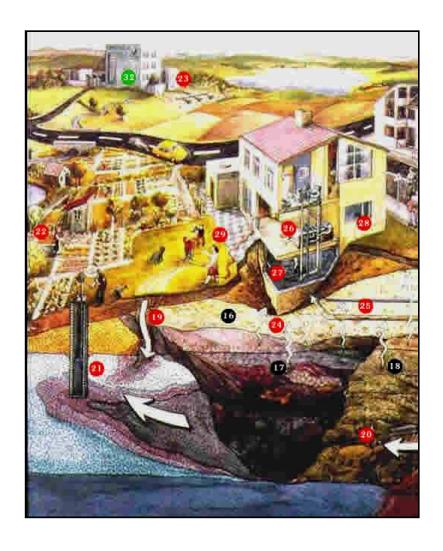
O lodo passa por um condicionamento químico para melhorar suas condições de desidratação. A última etapa do tratamento acontece em um filtroprensa, onde é retirada mais umidade do lodo, que depois é encaminhado a aterros sanitários ou para utilização como fertilizante na agricultura. A utilização do lodo na agricultura ainda é muito questionável devido a sua freqüente contaminação com metais pesados.

3. Tratamento do lodo

Essa etapa é desenvolvida nos digestores primários e secundários, que são grandes tanques fechados, onde a ausência de oxigênio transforma o lodo em matéria mineralizada, com baixa carga orgânica e poucas bactérias. Nos digestores ocorre a produção de gás. O lodo é encaminhado para aterros sanitários ou para utilização como fertilizante na agricultura. Dentre os produtos de limpeza que mais dificultam o tratamento estão os detergentes sintéticos não biodegradáveis, fabricados a partir do benzeno e do ácido sulfúrico. As bactérias não conseguem atacá-los e quebrá-los em porções menores e, assim, eles permanecem, formando as espumas brancas que podem ser observadas nos rios.

 Os detergentes sintéticos têm várias aplicações, desde o uso doméstico nas louças até o uso industrial, passando pelo sabão em pó, dentre outros. O detergente sintético não biodegradável é conhecido quimicamente por ABS -Alquio Benzeno Sulfanato de Sódio. O detergente biodegradável é o Alquio Sulfanato Linear.

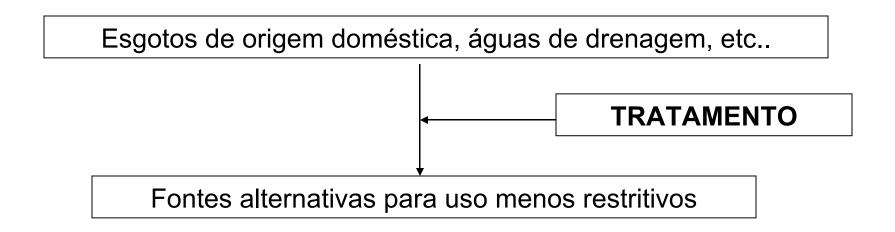
O despejo de óleos no sistema de esgotos é também muito impactante. Os óleos e graxas causam o entupimento da rede de esgotos; além de não serem degradáveis (não podem ser dissolvidos pela água).

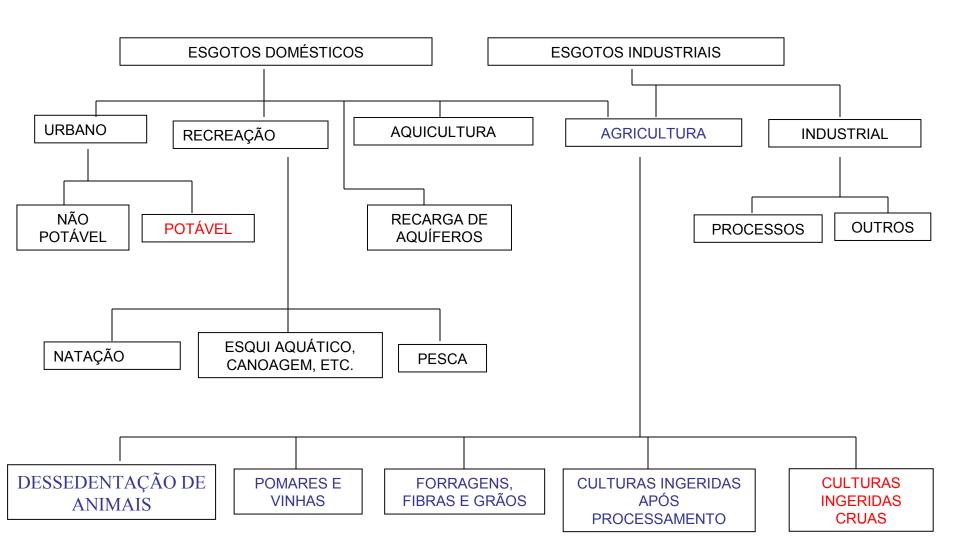

Tratamento de efluentes - Industriais

 Cada estado tem suas próprias leis de controle ambiental. Em São Paulo, que regula as emissões industriais é a Companhia de Tecnologia de Saneamento Ambiental (Cetesb). Nesse estado, os limites de emissão de qualquer fonte de poluição nas águas são definidos de acordo com a classificação anterior da água. São quatro classes conhecidas, cada uma delas identificada com as possibilidades de utilização e também com os limites de poluição aceitáveis.

No caso de constatação de alguma irregularidade, a indústria responsável pela emissão responde por um processo administrativo, que penaliza com multas, paralização ou encerramento das atividades.

Tratamento de efluentes - Industriais


 A indústria, ainda por conta da Lei 9.605/98 (e seu decreto 3.179/99), responde a uma processo criminal, que pode resultar em prisão dos funcionários/proprietários responsáveis. Dessa forma, a indústria precisa garantir (por meio da implantação de uma Estação de Tratamento de Efluentes) que seus efluentes estejam em concordância com as determinações da lei. A cobrança pelo uso da água, como vimos anteriormente, visa justamente evitar que os esgotos sejam lançados nos rios. Quem fizer, pagará por isso. É o conceito do poluidor-pagador. Vale lembrar que sairá mais barato para o empresário tratar do esgoto do que pagar pelo uso da água.


CETESB

1985 – CONSELHO ECONÔMICO E SOCIAL DAS NAÇÕES UNIDAS – Política de gestão para áreas carentes de recursos hídricos.

"A NÃO SER QUE EXISTA GRANDE DISPONIBILIDADE, NENHUMA ÁGUA DE BOA QUALIDADE DEVE SER UTILIZADA PARA USOS QUE TOLEREM ÁGUAS DE QUALIDADE INFERIOR"

TIPOS DE REUSO

