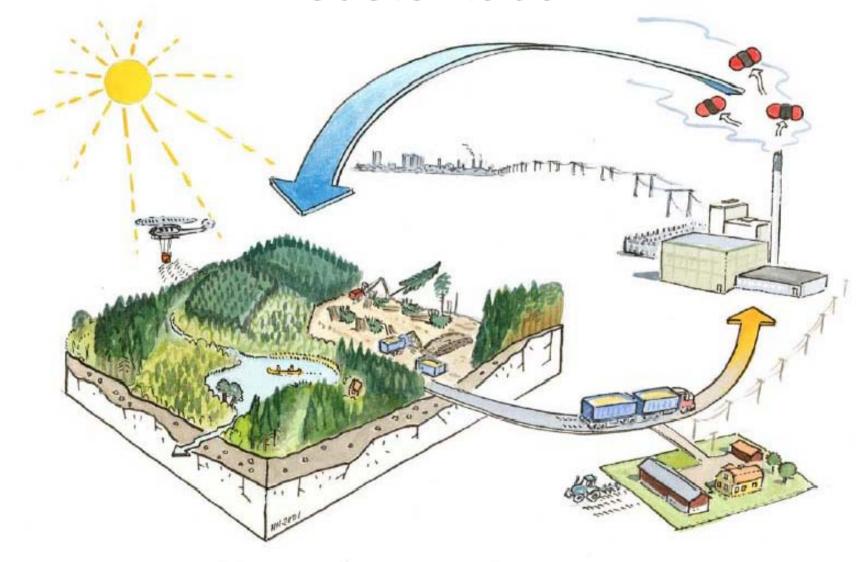
LCF – 510 – Inventário Florestal

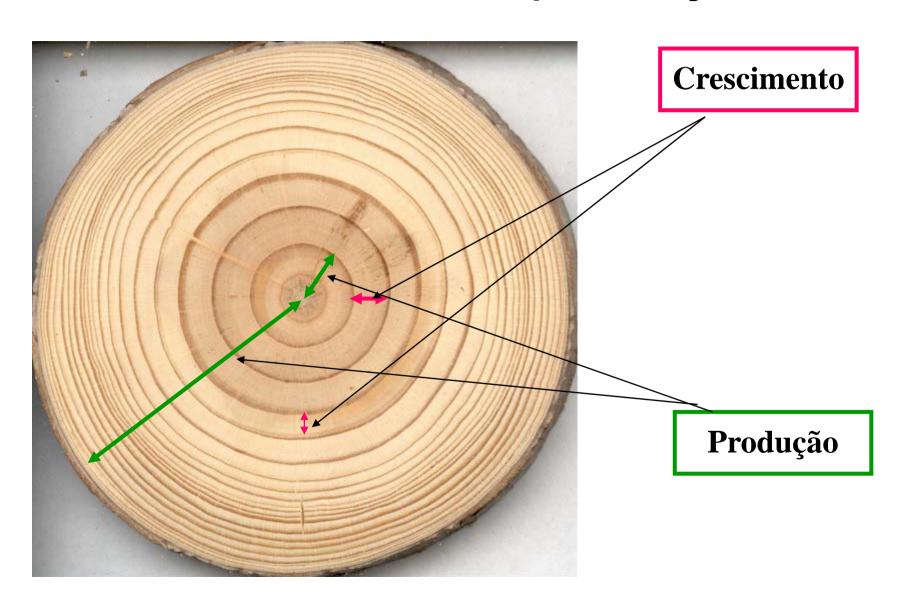
Crescimento e Produção de Florestas

Crescimento

- Como todo outro ser vivo as árvores reproduzem-se, crescem e morrem.
- Toda atividade florestal está na dependência desses fenômenos naturais, ou seja, o aumento de tamanho com o passar do tempo.
- O desafio é fazer com que as árvores cresçam o mais rápido possível e produzam os bens diretos e indiretos necessários para as populações humanas, com o mínimo impacto possível no meio ambiente.
- Também que as espécies se perpetuem para atender as demandas da conservação.

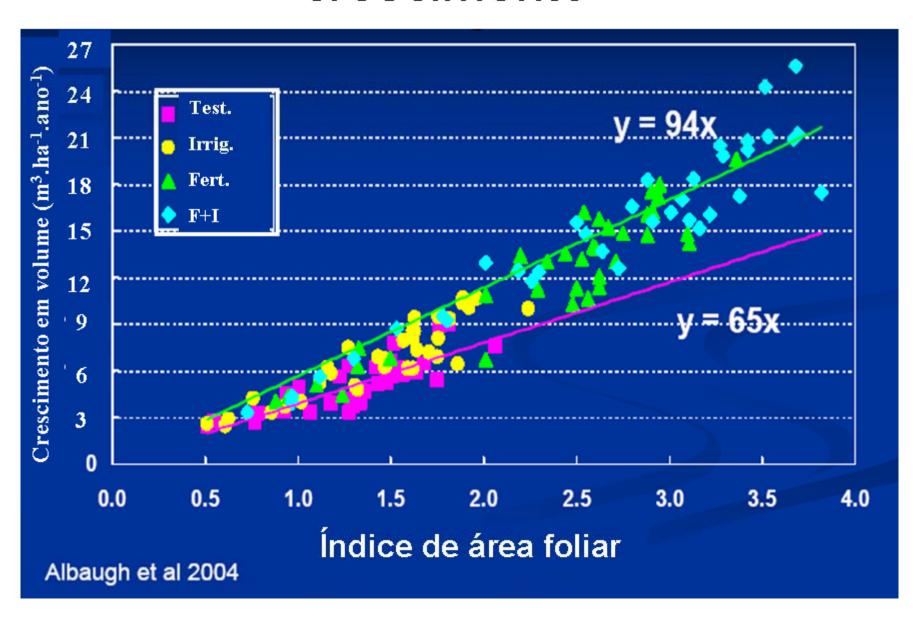

Crescimento

- Importante para a atividade florestal.
- **Definição**: Alteração irreversível no tempo, principalmente em dimensão, muitas vezes em forma e ocasionalmente em número.
- **Crescimento** = medida de alteração de alguma característica (biomassa, área basal, volume, densidade básica, carbono, celulose, etc.) em um período de tempo específico. Por exemplo, um talhão de Pinus taeda aumenta o volume em 10 anos em 300 m³.ha⁻¹. Neste caso dizemos que o incremento médio anual é de 30 m³.ha⁻¹.ano⁻¹.


Produção

- Produção possui dois significados:
 - Quantidade de alguma característica que pode ser colhida por período.
 - Quantidade total da característica que pode ser removida a qualquer tempo.
 - No exemplo de Pinus taeda, a média de 30 metros cúbicos pode ser cortado anualmente ou 300 metros cúbicos pode ser colhido em 10 anos.
 - Manejo para a produção sustentada: Colheita = crescimento.

Manejo para a produção sustentada


Crescimento e produção

Crescimento da árvore

- Diferentes partes da árvore crescem diferentemente em cada estação do ano. Cada espécie pode ter as suas características de crescimento (florestas mistas).
- Geralmente o crescimento em altura precede o crescimento em DAP.
- O crescimento em altura é basípeto (do ápice para a base – HOUAISS) e depende de fatores hereditários, condições ambientais passadas e presentes.
- O crescimento em diâmetro também é basípeto e é muito mais condicionado a quantidade de folhas e as condições ambientais presentes.

Importância da área foliar no crescimento

Área foliar (m².m⁻²)

Menor produção

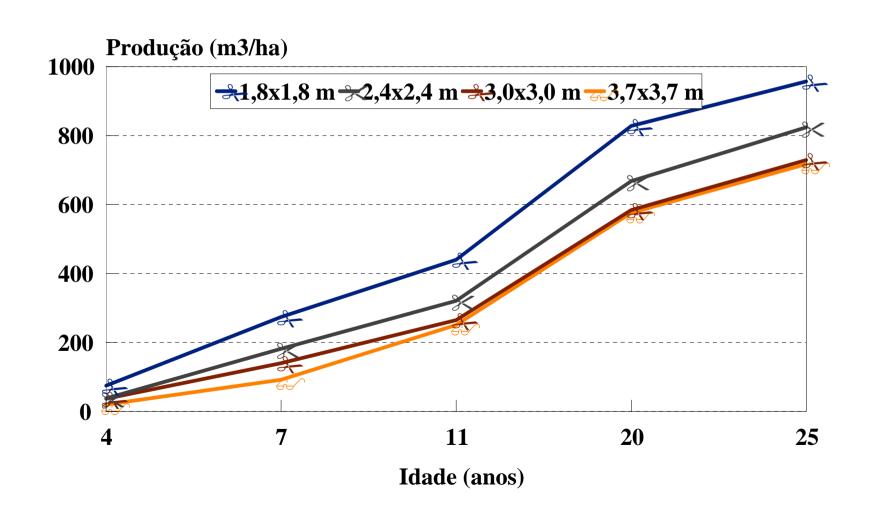
Maior produção

Lai 2000 – Índice de área foliar

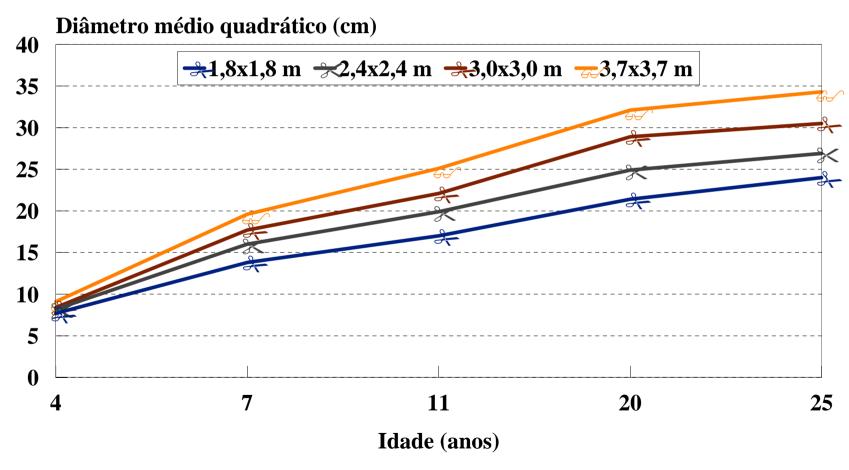
Forest Ecology and Management, 192(1):3-19, 2004

Fatores que influenciam o crescimento em plantações

- Espaçamento inicial.
- Tratamentos silviculturais (preparo de solo, controle de ervas competidoras, controle de pragas e doenças, etc.)
- Desbaste artificial e desrama (poda).
- Solo (inclui a adubação).
- Condições climáticas (geadas, secas, déficit hídrico).

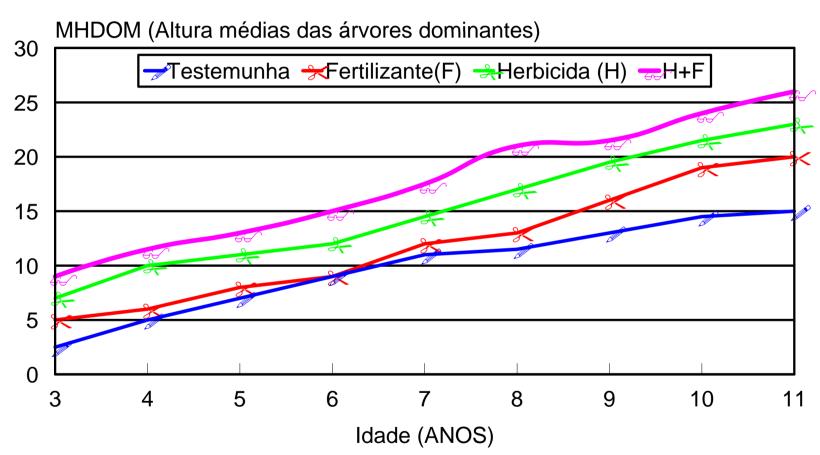

Fatores que influenciam o crescimento em florestas nativas

- Densidade da regeneração
- Distribuição espacial das árvores/espécies.
- Tratamento silviculturais (corte de cipó, uso de fogo, anelamento de árvores de espécies não comerciais, etc.)
- Desbaste artificial (intensidade, tipo, modo de corte, etc.)
- Condições de solo (qualidade do sítio)
- Condições climáticas.


Alguns fatores que influem no crescimento de um talhão (povoamento)

- O crescimento de um povoamento é composto da soma do crescimento individual das árvores e os impactos das alterações na composição do talhão (dinâmica do talhão).
- Dinâmica do talhão refere-se às alterações na composição de espécies do talhão, efeitos da mortalidade (auto-desbaste), operações de colheita (corte) e o impacto de novas árvores que adentram os limites mínimos de medição (recrutamento).

Influência do espaçamento na produção - Pinus taeda



Diâmetro médio quadrático

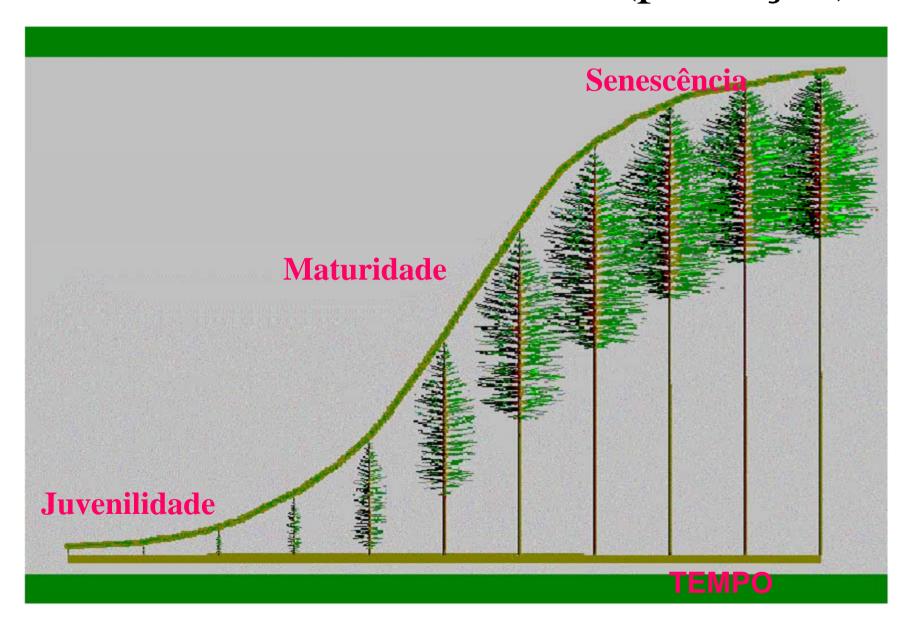
Mortalidade (25 anos): 1,8 - 31,0%; 2,4 - 12,9%; 3,0 - 8,2% e 3,7 - 0,8%.

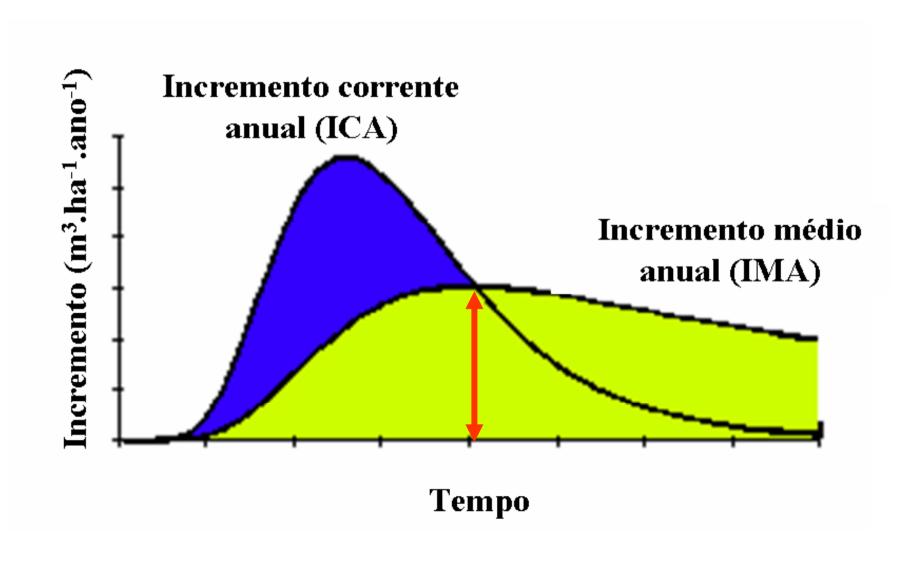
Produção de Pinus taeda

Herbicida= manter limpo (glifosato)

Fertilizante (ano 1 e 2)= 250 kg/ha (DAP) + 100 kg KCl

Fertilizante (anualmente)= 50 kg/ha de Nitrato de amônio

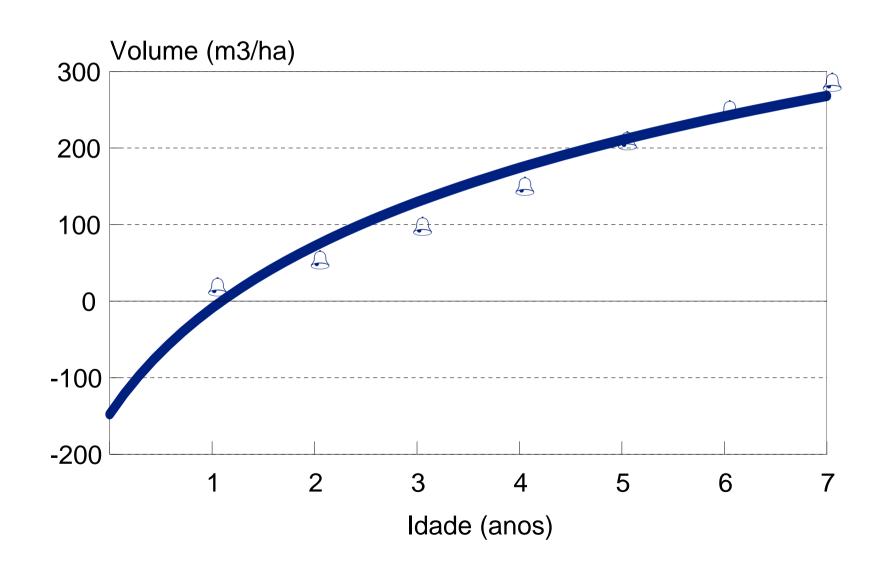

Fatores da produção


Testemunha

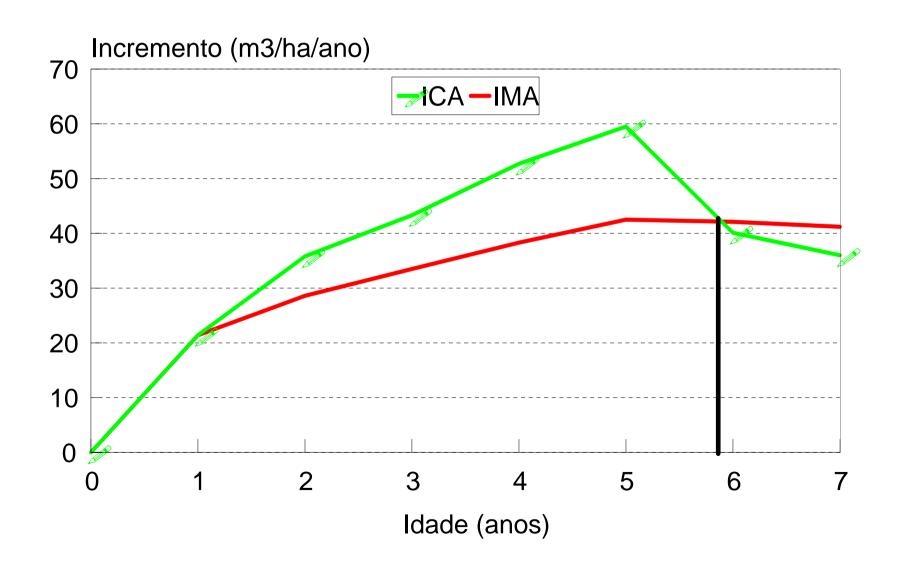
Herbicida + Adubação

Fases do crescimento total (produção)

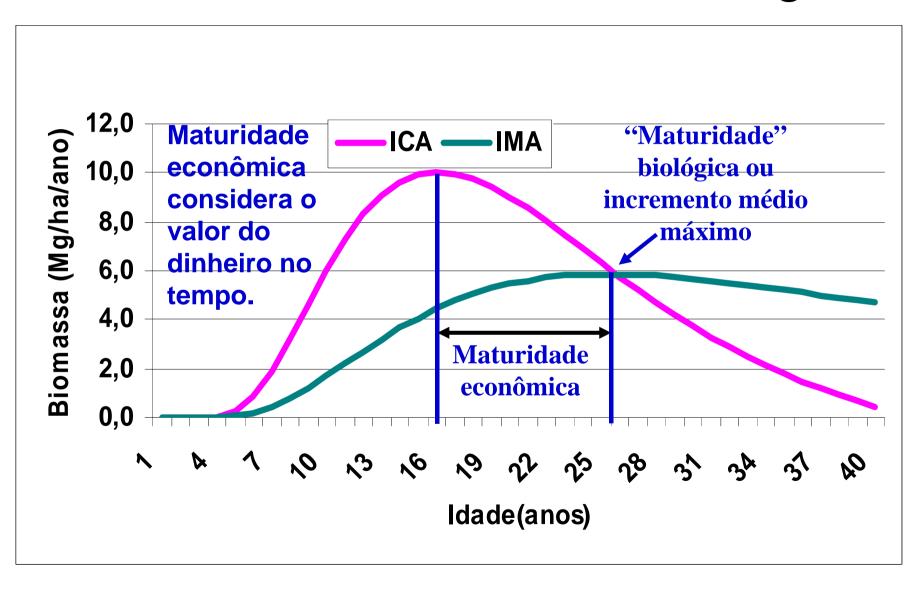
Intensidade do crescimento


Exemplo do crescimento e produção de um talhão

Produção


Crescimento

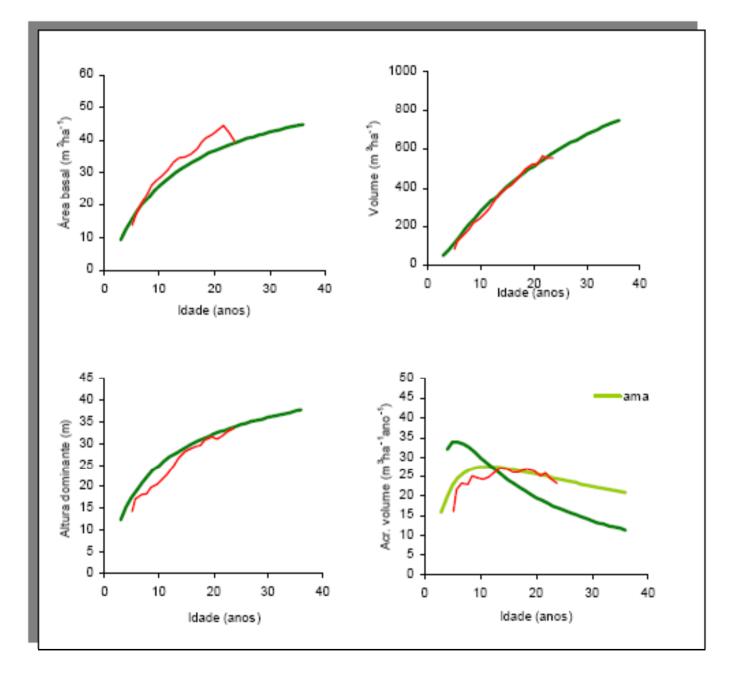
Idade (anos)	Volume (m³.ha ⁻¹)	ICA (m³.ha-¹.ano-¹)	IMA (m³.ha ⁻¹ .ano ⁻¹)	
0	0	0	0	
1	21,4	21,4	21,4	
2	57,2	35,8	28,6	
3	100,5	43,3	33,5	
4	153,2	52, 7	38,3	
5	212,7	59,5	42,5	
6	252,8	40,1	42,1	
7	288,7	36,0	41,2	


Produção

Crescimento

Maturidade econômica e biológica

Modelo e modelagem (MIT, 2007)


- O que é um modelo?
 - Um modelo é a descrição de um sistema físico e que pode ser usado para explicar ou predizer o comportamento do sistema.
- **Princípio fundamental**: use o modelo mais simples que captura os aspectos mais importantes do comportamento do sistema e nas condições que o modelo será usado.
- Modelos complexos: usados para predizer o aquecimento global e descrever o complexo sistema climático terrestre.
- Túnel de vento é o modelo físico de um grande objeto (avião, por exemplo).
- Modelo animal (ex.: ratos de laboratório) geralmente usado para modelar a fisiologia humana.

Modelo de crescimento e produção florestal

- Uso de ferramentas matemáticas e estatísticas (usamos principalmente modelos de regressão).
- Uso de dados de inventário e experimentação como base para os modelos (geralmente parcelas permanentes).
- Usados para predizer a produção futura de um povoamento florestal, assim como as alterações advindas com o tempo.
- Usa a informação obtida em talhões no passado e faz inferência sobre outros talhões no futuro.

Para que serve?


- Planejamento estratégico (curto, médio e longo prazos).
- Logística
- Análise de suprimento de madeira de uma indústria
- Manejo florestal
- Resposta a tratamentos silviculturais

Modelos de crescimento e produção para Eucalyptus globulus (Portugal)

Margarida Tomé (ISA-UTL, Portugal, 2005)

Modelos de crescimento e produção florestal

Melhor compreensão dos processos fisiológicos

Experiências realizadas em laboratório

Tipos de modelos (HOUAISS)

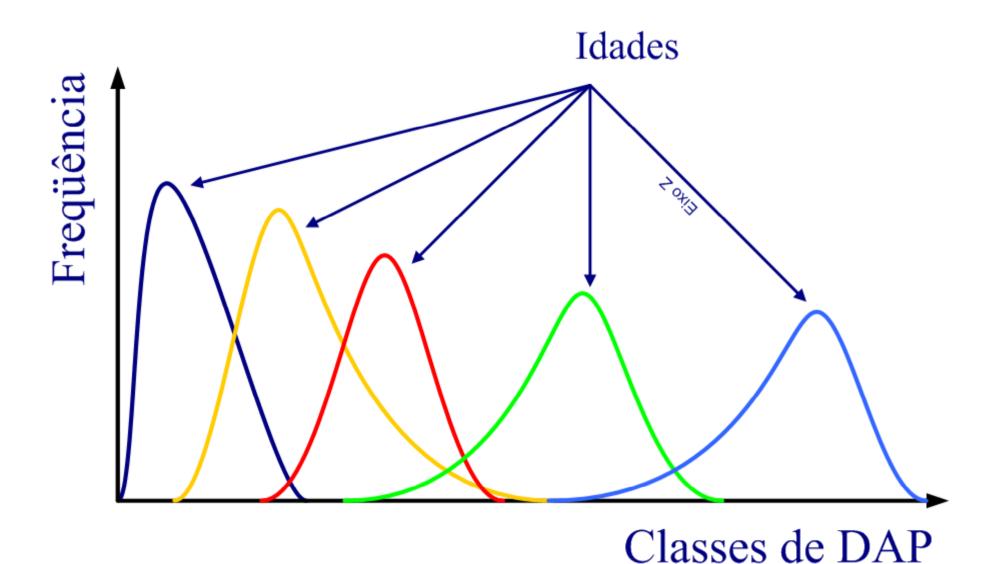
- Empíricos: doutrina segundo a qual todo conhecimento provém unicamente da experiência, limitando-se ao que pode ser captado do mundo externo, pelos sentidos, ou do mundo subjetivo, pela introspecção, sendo geralmente descartadas as verdades reveladas e transcendentes do misticismo, ou apriorísticas e inatas do racionalismo (obtidos essencialmente a partir de medições nas parcelas permanentes)
- Mecanicistas: nas origens da ciência moderna, com Galileu (1564-1642), Newton (1642-1727) e Descartes (1596-1650), doutrina que considera todos os fenômenos naturais passíveis de quantificação e geometrização, em decorrência de sua organização em leis universais de causalidade mecânica (baseados apenas no conhecimento e modelagem dos processos fisiológicos)

Modelos

- Mecanicistas: são os modelos de base fisiológica (pouco usados pois exigem conhecimento apurado de ecologia e fisiologia das plantas).
- Empíricos (ou estatísticos): são também chamados de modelos orientados para a gestão de povoamentos florestais ou também chamados de modelos de produção (mais usados e de melhor compreensão).

Modelos empíricos

- Modelos de povoamento: baseia-se na simulação do crescimento do povoamento, ou seja, o crescimento médio é função das características do povoamento (classe de sítio, área basal por hectare, número de árvores por hectare, etc.).
- Modelos da árvore individual: a simulação do crescimento do povoamento é baseada no crescimento médio de cada árvore, considerando as características do povoamento onde a árvore está inserida (usada para florestas dissetâneas).


Modelos de árvore individual

- Independente da distância: no modelo não é levada em consideração a distância da árvore objeto de estudo de suas vizinhas (índice de competição).
- Dependente da distância: no modelo é incorporado uma medida de competição intra ou inter específica.

Modelos de povoamento

- **Explícitos**: não leva em consideração a distribuição dos diâmetros do povoamento.
- Implícitos: também chamados de modelos de distribuição de diâmetros (DAP geralmente), muito usados quando se pretende obter informações sobre usos múltiplos da madeira e que podem considerar desbastes.

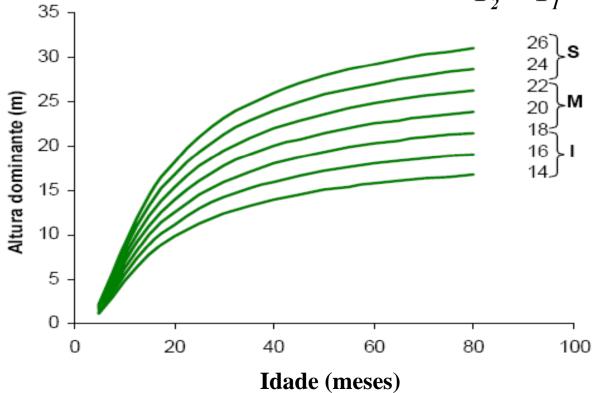
Predição da distribuição de diâmetros

Literatura para modelos empíricos explícitos mais usados

- Clutter, J. L., L. V. Pienaar, J. C. Fortson, G. H. Brister, and R. L Bailey. 1983. Timber Management: A Quantitative Approach. Krieger Publishing Company. ISBN 0-89464-747-4. 333p.
- CLUTTER, J. L. Compatible growth and yield models for loblolly pine. **Forest Science**, Bethesda, v. 9, p. 354-371, **1963**.

Exemplo de uma tabela de produção para eucalipto

	Classe de Produtividade III (S=15)		Classe de Produtividade II (S=23)			Classe de Produtividade I (S=31)			
Idade	B (m²/ha)	Vol. (m³/ha)	IMM (m³/ha.ano)	B (m²/ha)	Vol. (m³/ha)	IMM (m³/ha.ano)	B (m²/ha)	Vol. (m³/ha)	IMM (m³/ha.ano)
28	4,6471	20,0420	0,7158	9,3941	53,3442	1,9051	12,4419	86,5772	3,0920
30	5,1962	24,0431	0,8014	10,1675	61,6018	2,0534	13,4075	99,4695	3,3156
32	5,7296	28,1941	0,8811	10,8963	69,8694	2,1834	14,3137	112,3157	3,5099
34	6,2455	32,4480	0,9544	11,5826	78,0810	2,2965	15,1640	125,0216	3,6771
36	6,7430	36,7653	1,0213	12,2289	86,1871	2,3941	15,9621	137,5175	3,8199
38	7,2216	41,1127	1,0819	12,8376	94,1507	2,4776	16,7118	149,7531	3,9409
40	7,6813	45,4633	1,1366	13,4113	101,9451	2,5486	17,4165	161,6932	4,0423
42	8,1224	49,7950	1,1856	13,9525	109,5519	2,6084	18,0798	173,3145	4,1265
44	8,5453	54,0900	1,2293	14,4634	116,9585	2,6581	18,7046	184,6026	4,1955
46	8,9507	58,3342	1,2681	14,9462	124,1576	2,6991	19,2939	195,5499	4,2511
48	9,3392	62,5168	1,3024	15,4029	131,1453	2,7322	19,8504	206,1544	4,2949
50	9,7115	66,6290	1,3326	15,8353	137,9209	2,7584	20,3766	216,4177	4,3284
52	10,0682	70,6647	1,3589	16,2453	144,4856	2,7786	20,8746	226,3445	4,3528
54	10,4103	74,6190	1,3818	16,6344	150,8423	2,7934	21,3466	235,9415	4,3693
56	10,7383	78,4887	1,4016	17,0040	156,9951	2,8035	21,7945	245,2169	4,3789
58 60 62 64	11,0529 11,3549 11,6449 11,9235	82,2718 85,9670 89,5739 93,0927	1,4185 1,4328 1,4447 1,4546	17,3555 17,6901 18,0090 18,3131	162,9489 168,7094 174,2825 179,6743	2,8095 2,8118 2,8110 2,8074	22,2199 22,6244 23,0095 23,3765	254,1802 262,8413 271,2106 279,2986	4,3824 4,3807 4,3744 4,3640


Modelo de Clutter (empírico e explícito)

- Três equações principais:
 - Qualidade de sítio (curvas de índice de sítio)
 - Crescimento em área basal.
 - Função de produção.

Curva de índice de sítio

$$ln(MHDOM) = \beta_{\theta} + \beta_{I} \cdot (\frac{1}{I}), ou$$

$$ln(MHDOM2) - ln(MHDOM1) = \beta_1 \cdot (\frac{1}{I_2} - \frac{1}{I_1})$$

Crescimento em área basal (Clutter)

$$ln(B_2) = \left(\frac{I_1}{I_2}\right).ln(B_1) + \beta_3.(1 - \frac{I_1}{I_2}) + \beta_3.\left[(1 - \frac{I_1}{I_2}).S\right],$$

onde:

 $B_2 = \text{Área Basal na idade 2 (m}^2.ha^{-1}),$

 $B_1 = \text{Área Basal na idade 1 (m}^2.ha^{-1}),$

 $I_1 = idade na ocasião 1 (anos),$

 $I_2 = idade na ocasião 2 (anos) e$

S = indice de sitio (m).

Função de produção (Clutter)

$$ln(V) = \beta_0 + \beta_1 \cdot \frac{1}{S} + \beta_2 \cdot \frac{1}{I} + \beta_3 \cdot ln(B_2),$$

onde:

V = volume na idade desejada de projeção (m 3 .ha $^{-1}$),

S = indice de sitio (m),

I = idade desejada de projeção (anos),

 $\boldsymbol{B}_{2}=$ área basal projetada na idade desejada (m².ha⁻¹).

#