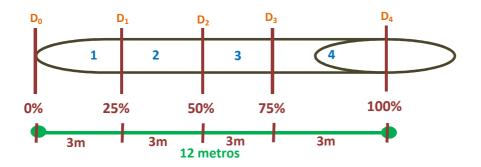
LCF-510-Inventário Florestal

Nome	Número USP	

Calcule a biomassa e o carbono, assim como a quantidade de gases do efeito estufa, removida da atmosfera, pela árvore (DAP=21 cm e Altura Total=19m) cujas dimensões estão abaixo:


Peso úmido da galhada (kg)	Altura da seção (% da altura comercial)	Diâmetro com casca (cm)	Densidade básica do disco com casca (g/cm³)	Volume (cm³)	Média da densidade básica (g/cm³)	Biomassa (g)
126	0	D_0 23	0,52			
126	25	D ₁ 20	0,54	109445,2341	0,53	58005,9741
126	50	D ₂ 18	0,49	85294,2405	0,515	43926,5339
126	75	D ₃ 12	0,44	55134,9511	0,465	25637,7523
126	100	D ₄ 5	0,40	19909,8434	0,42	8362,1342

Umidade da galhada = 63%Altura comercial = 12 mCarbono = 48% da biomassa CO_2 (gás carbônico) = 44/12 C

Calcule os valores finais em kg.

BIOMASSA TOTAL = BIOMASSA TRONCO + BIOMASSA GALHADA

BIOMASSA TRONCO:

A altura das seções é em relação a altura comercial (12 m), portanto cada seção tem um comprimento de 3m (300 cm). Biomassa é o cálculo do volume multiplicado pela densidade. Primeiro é necessário calcular o volume de cada seção através da fórmula de Smalian:

Fórmula de Smalian => $V=\frac{\pi}{4}\frac{(D_i^2+D_f^2)}{2}l$, onde V é volume da seção, D_i e D_f são os diâmetros inicial e final da seção, respectivamente e, l é o comprimento da seção.

Seção 1->
$$V_1 = \frac{\pi}{4} \frac{(D_0^2 + D_1^2)}{2} l_1 = \frac{\pi}{4} \frac{(23^2 + 20^2)}{2} 300 = 109445,2341 \text{ cm}^3$$

Seção 2->
$$V_2 = \frac{\pi}{4} \frac{(D_1^2 + D_2^2)}{2} l_2 = \frac{\pi}{4} \frac{(20^2 + 18^2)}{2} 300 = 85294,2405 \text{ cm}^3$$

Seção 3->
$$V_3 = \frac{\pi}{4} \frac{(D_2^2 + D_3^2)}{2} l_3 = \frac{\pi}{4} \frac{(18^2 + 12^2)}{2} 300 = 55134,9511 \text{ cm}^3$$

Seção 4->
$$V_4 = \frac{\pi}{4} \frac{(D_3^2 + D_4^2)}{2} l_4 = \frac{\pi}{4} \frac{(12^2 + 5^2)}{2} 300 = 19909,8434 \text{ cm}^3$$

A densidade básica foi determinada de cada disco retirado de cada diâmetro, assim temos 5 densidades, porém somente 4 seções, assim é feita a média das densidades:

Seção 1 ->
$$D_1 = \frac{Db_0 + Db_1}{2} = \frac{0.52 + 0.54}{2} = 0.53 \text{ g/cm}^3$$

Seção 2 ->
$$D_2 = \frac{Db_1 + Db_2}{2} = \frac{0.54 + 0.49}{2} = 0.515 \text{ g/cm}^3$$

Seção 3 ->
$$D_3 = \frac{Db_2 + Db_3}{2} = \frac{0.49 + 0.44}{2} = 0.465 \text{ g/cm}^3$$

Seção 4 ->
$$D_4 = \frac{Db_3 + Db_4}{2} = \frac{0,44 + 0,40}{2} = 0,42 \text{ g/cm}^3$$

Obs: a densidade é determinada através da formula $\rho = \frac{massa\ seca}{volume}$.

Agora é só calcular a Biomassa = volume * densidade. Como o volume está em cm³ e a densidade em g/cm³, a biomassa será dada em g. Sempre prestar atenção nas unidades. Se o volume foi calculado em m³, então a densidade teria que ser transformada para kg/m³ para então calcular a biomassa que seria dada em kg.

Seção 1 ->
$$B_1 = V_1 * D_1 = 109445,2341 * 0,53 = 58005,9741$$
 g
Seção 2 -> $B_2 = V_2 * D_2 = 85294,2405 * 0,515 = 43926,5339$ g

Seção 3 ->
$$B_3 = V_3 * D_3 = 55134,9511 * 0,465 = 25637,7523 g$$

Seção 4 ->
$$B_4 = V_4 * D_4 = 19909,8434 * 0,42 = 8362,1342 g$$

A Biomassa total do tronco é a soma da biomassa de todas as seções. Como o exercício pediu para os valores finais serem apresentados em kg iremos dividir por 1000 para transformar de g para kg:

BIOMASSA TRONCO ->
$$B_T = B_1 + B_2 + B_3 + B_4 = \frac{135932,3945 g}{1000} = 135,9324 kg$$

BIOMASSA GALHADA:

O peso úmido da galhada é de 126 kg, uma única vez, ele só está sendo repetido em todas as linhas da árvore, pois no arquivo que será analisado essas linhas não podem ficar em branco, assim repete-se a informação. Precisa-se determinar o peso seco da galhada, pois é este usado no cálculo da biomassa. Sabemos que a galhada tem 63% de umidade, portanto 37% de seu peso é o peso seco:

BIOMASSA GALHADA -> $B_G = 126 * 0.37 = 46.62 \text{ kg}$

BIOMASSA TOTAL = BIOMASSA TRONCO + BIOMASSA GALHADA

 $BIOMASSA\ TOTAL = 135,9324 + 46,62 = 182,5524\ kg$

Sabemos que o carbono é 48% da biomassa, assim:

$$CARBONO = 182,5524 * 0,48 = 87,6252 \text{ kg}$$

O gás carbônico é $\frac{44}{12}$ C:

GÁS CARBÔNICO =
$$\frac{44}{12}$$
 * 87,6252 = 321,2922 kg