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Introductory concepts

1.1 Introduction

Ecology is the study of the distribution and abundance of plants and
animals and their interactions with their environment. Many studies of
biological populations require estimates of population density (D) or
size (N), or rate of population change A, = D,,,/D;= N;, /N, These
parameters vary in time and over space as well as by species, sex and
age. Further, population dynamics and hence these parameters often
depend on environmental factors.

This book is a synthesis of the state-of-the-art theory and application of
distance sampling and analysis. The fundamental parameter of interest is
density (D = number per unit area). Density and population size are related
as N=D - 4 where A is area. Thus, attention can be focused on D.

Consider a population of N objects distributed according to some
spatial stochastic process, not necessarily Poisson, in a field of size 4.
A traditional approach has been to establish a number of plots or
quadrats at random (e.g. circular, square or long rectangular) and census
the population within these plots. Conceptually, if n objects are counted
within plots of total area a, then an estimator of density, termed D, is

D=n/a

Under certain reasonable assumptions, D is an estimator of the para-
meter D = N/A. This is the finite population sampling approach (Cochran
1977) and was fully developed for most situations many years ago. This
approach asks the following question:

Given a fixed area (i.e. the total area of the sample plots), how
many objects are in it (Fig. 1.1)?

Distance sampling theory extends the finite population sampling
approach. Again, consider a population of N objects distributed according
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to some stochastic process in a field of size 4. In distance sampling
theory, a set of randomly placed lines (Fig. 1.2) or points (Fig. 1.3) is
established and distances are measured to those objects detected by
travelling the line or surveying the points. The theory allows for the
fact that some, perhaps many, of the objects will go undetected. In
addition, there is a marked tendency for detectability to decrease with
increasing distance from the transect line or point. The distance sampling
approach asks the following question:

Given the detection of n objects, how many objects are estimated
to be within the sampled area?

Two differences can be noted in comparing distance sampling theory
with classical finite population sampling theory: (1) the size of the
sample area is sometimes unknown, and (2) many objects may not be
detected for whatever reason. One of the major advantages of distance
sampling is that objects can remain undetected (i.e. it can be used when
a census is not possible). As a particular object is detected, its distance
to the randomly chosen line or point is measured. Thus, distances are
sampled. Upon completion of a simple survey, n objects have been

Fig. 1.1. Finite population sampling approach with five 1 m square quadrats
placed at random in a population containing 100 objects of interest. X a;
=5,2n;=10, and D=2 objects/mz. In this illustration, the population is
confined within a well-defined area.
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Fig. 1.2. Line transect sampling approach with a single, randomly placed, line of
length L. Six objects (n = 6) were detected at distances xi, xa, . . ., X. Those objects
detected are denoted by a line showing the perpendicular distance measured. In
practical applications, several lines would be used to sample the population.

detected and their associated distances yi, ys, ..., y» recorded. The
variable y will be used as a general symbol for a distance measurement,
while x will denote a perpendicular distance and r will denote a radial
distance. Unbiased estimates of density can be made from these distance
data if certain assumptions are met.

Distance sampling theory includes two main approaches to the estim-
ation of density: line transects and point transects. Traditional sampling
theory may be considered a special case of distance sampling theory.
An application of point transect theory is the sampling method called
a trapping web, which is potentially useful in animal trapping studies.
Cue counting is another application of point transect theory and was
developed for marine mammal surveys. Nearest neighbour and point-
to-object methods are similar in character to point transects, but are
generally less useful for estimating object density.

1.1.1 Strip transects

Strip transects are long, narrow plots or quadrats and are typically used
in conjunction with finite population sampling theory. Viewed differently,
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Fig. 1.3. Point transect sampling approach with five randomly placed points
(k =5), denoted by the open circles. Eleven objects were detected and the 11
sighting distances r;, r,, . . ., r;; are shown.

they represent a very special case of distance sampling theory. Consider
a strip of length L and of width 2w (the width of the area censused).
Then, it is assumed that all objects are detected out to distance w either
side of the centreline, a complete census of the strip. No distances are
measured; instead, the strong assumption is made that all objects in the
strip are detected. Detections beyond w are ignored. Line and point
transect surveys allow a relaxation of the strong assumptions required
for strip (i.e. plot or quadrat) sampling (Burnham and Anderson 1984).
Note the distinction here between a census, in which all objects in an
area are counted, and a survey, where only some proportion of the
objects in the sampled area is detected and recorded.

1.1.2 Line transects

Line transects are a generalization of strip transects. In strip transect
sampling one assumes that the entire strip is censused, whereas in line
transect sampling, one must only assume a narrow strip around the
centreline is censused; that is, except near the centreline, there is no
assumption that all objects are detected. A straight line transect is
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Fig. 1.4. A population of objects with a gradient in density is sampled with
lines parallel to the direction of the gradient. In this case, there are k = 6 lines
of length I, b, ..., ls, and Y=L

Point at which
observer first x

detects object

Transectline L

Fig. 1.5. Basic measurements that can be taken in line transect surveys. Here
an area of size 4 is sampled by a single line of length L. If sighting distances
r are to be taken in the field, one should also measure the sighting angles 6, to
allow analysis of perpendicular distances x, calculated as x=r - sin (8). The
distance of the object from the observer parallel to the transect at the moment
of detection is z =r - cos (0).
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Fig. 1.6. Point transect surveys are often based on points laid out systematically
along parallel lines. Alternatively, the points could be placed completely at
random or in a stratified design. Variance estimation is dependent upon the
point placement design.

traversed by an observer and perpendicular distances are measured from
the line to each detected object (Fig. 1.2). The line is to be placed at
random and is of known length, L. In practice, a number of lines of
lengths /;, L, . . ., I, are used and their total length is denoted as L (Fig.
1.4). Objects away from the line'may go undetected and, if distances
are recorded accurately, reliable estimates of density can be computed.

It is often convenient to measure the sighting distance r; and sighting
angle ©;, rather than the perpendicular distance x;, for each of the n
objects detected (Fig. 1.5). The x; are then found by simple trigonometry:
x; =r; - sin (6;). Methods exist to allow estimation of density based
directly on r; and 6;. They are reviewed by Hayes and Buckland (1983),
who show that they perform poorly relative to methods based on
perpendicular distances, because they require more restrictive, and
generally implausible, assumptions. In addition, observations made
behind the observer (i.e. 6; > 90°) are problematic for models based on
sighting distances and angles.

1.1.3 Point transects

The term point transect was coined because it may be considered as a
line transect of zero length (i.e. a point). This analogy is only of limited
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conceptual use because there are several differences between line and
point transect theory. Point transects are often termed variable circular
plots in the ornithological literature, where the points are often placed
at intervals along straight line transects (Fig. 1.6). We consider a series
of k points positioned randomly. An observer measures the sighting
(radial) distance r; from the random point to each of the objects
detected. Upon completion of the survey of the k points, one has
distance measurements to the detected objects. Point transects are a
generalization of traditional circular plot surveys. In circular plot sam-
pling, an area of mw’ is censused, whereas in point transect sampling,
only the area close to the random point must be fully censused; a
proportion of objects away from the random point but within the survey
area remains undetected.

The area searched in strip and line transect sampling is 2wL, whereas
the area searched in circular plot and point transect sampling is kmw?
(assuming, for the moment, that w is finite). In strip and traditional
circular plot sampling, it is assumed that these areas are censused, i.e.
all objects of interest are detected. In line and point transect sampling,
only a relatively small percentage of the objects might be detected within
the searched area (of width 2w for line transects or radius w for point
transects), possibly as few as 10-30%. Because objects can remain
undetected, distance sampling methods provide biologists with a power-
ful yet practical methodology for estimating density of populations.

1.1.4 Special applications

Distance sampling theory has been extended in two ways that deserve
mention here: trapping webs and cue counts. These important applica-
tions are useful in restricted contexts and are direct applications of
existing distance sampling theory. Two spatial modelling methods some-
times termed ‘distance sampling’ are more familiar to many botanists,
but have limited use for estimating object density. These methods are
point-to-object and nearest neighbour methods; they have some simil-
arities to distance sampling as defined in this book. but differ in that
there is no analogy to the detection function g(y).

(a) Trapping webs Trapping webs (Anderson ef al. 1983; Wilson and
Anderson 1985b) represent a particular application of distance sampling
theory and provide a new approach to density estimation for animal
trapping studies. Traps are placed along lines radiating from randomly
chosen points (Fig. 1.7); the traditionally used rectangular trapping grid
cannot be used as a trapping web. Here ‘detection’ by an observer is
replaced by animals being caught in traps at a known distance from the
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centre of a trapping web. Trapping continues for ¢ occasions and only
the data from the initial capture of each animal are analysed. Trapping
webs provide an alternative to traditional capture-recapture sampling
where density is of primary interest.

(b) Cue counting Cue counting (Hiby 1985) was developed as an
alternative to line transect sampling for estimating whale abundance
from sighting surveys. Observers on a ship or aircraft record all sighting
cues within a sector ahead of the platform and their distance from the
platform. The cue used depends on species, but might be the blow of a

1
p
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Fig. 1.7. Use of a trapping web to sample small mammal populations is an
extension of point transect theory. Traps (e.g. live traps, snap traps or pitfall
traps), represented as O, are placed at the intersections of the radial lines with
the concentric circles.
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whale at the surface. The sighting distances are converted into the
estimated number of cues per unit time per unit area using point transect
models. The cue rate (usually corresponding to blow rate) is estimated
from separate experiments, in which individual animals or pods are
monitored over a period of time.

(c) Point-to-object methods In point transect sampling, the distance
of each detected object from the point is recorded. In point-to-object
methods, the distance of the nearest object from the point is recorded
(Clark and Evans 1954; Eberhardt 1967). The method may be extended,
so that the distances of the n nearest objects to the point are recorded
(Holgate 1964; Diggle 1983). Thus the number of detected objects
from a point is predetermined, and the area around the point must
be searched exhaustively to ensure that no objects are missed closer
to the point than the farthest of the n identified objects. Generally
the method is inefficient for estimating density, and estimators are prone
to bias.

(d) Nearest neighbour methods Nearest neighbour methods are closely
similar to point-to-object methods, but distances are measured from a
random object, not a random point (Diggle 1983). If objects are ran-
domly distributed, the methods are equivalent, whereas if objects are
aggregated, distances under this method will be smaller on average.
Diggle (1983) summarizes ad hoc estimators that improve robustness by
combining data from both methods; if the assumption that objects are
randomly distributed is violated, biases in the point-to-object and near-
est neighbour density estimates tend to be in opposite directions.

1.1.5 The detection function

Central to the concept of distance sampling is the detection function
g(y):

g(y) = the probability of detecting an object, given that it is at distance
y from the random line or point
= prob {detection |distance y}.

The distance y refers to either the perpendicular distance x for line transects
or the sighting (radial) distance r for point transects. Generally, the
detection function decreases with increasing distance, but 0 < g(y) < 1
always. In the development to follow we usually assume that g(0) =1,
1.e. objects on the line or point are seen with certainty (i.e. probability 1).
Typical graphs of g(y) are shown in Fig. 1.8. Often, only a small
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Detection function g(y)

0 + : :
0 Distance y w

Fig. 1.8. Some examples of the detection function g(y). Function b is truncated
at w and thus takes the value zero for all y > w. Functions with shapes similar
to a, b and ¢ are common in distance sampling. Function d usually results from
poor survey design and conduct, and is problematic.

percentage of the objects of interest are detected in field surveys.
However, a proper analysis of the associated distances allows reliable
estimates of true density to be made. The detection function g(y) could
be written as g(y|v), where v is the collection of variables other than
distance affecting detection, such as object size. We will not use this
explicit notation, but it is understood.

1.1.6 Summary

Distance sampling is a class of methods that allow the estimation
of density (D = number per unit area) of biological populations. The
critical data collected are distances y; from a randomly placed line
or point to objects of interest. A large proportion of the objects
may go undetected, but the theory allows accurate estimates of density
to be made under mild assumptions. Underlying the theory is the
concept of a detection function g(y) = prob {detection|distance y}.
Detectability usually decreases with increasing distance from the random
line or point.
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1.2 Range of applications

1.2.1 Objects of interest

Studies of birds represent a major use of both point and line transect
studies. Birds are often conspicuous by their bright coloration or
distinctive song or call, thus making detection possible even in dense
habitats. Surveys in open habitats often use line transects, whereas
surveys in more closed habitats with high canopies often use point
transects. Distance sampling methods have seen use in studying popu-
lations of many species of gamebirds, raptors, passerines and shorebirds.

Many terrestrial mammals have been successfully surveyed using dis-
tance sampling methods (e.g. pronghorn, feral pigs, fruit bats, mice, and
several species of deer, rabbits, hares, primates and African ungulates).
Marine mammals (several species of dolphin, porpoise, seal and whale)
have been the subject of many surveys reported in the literature.
Reptiles, amphibians, beetles and wolf spiders have all been the subject
of distance sampling surveys, and fish (in coral reefs) and red crab
densities have been estimated from underwater survey data.

Many inanimate objects have been surveyed using distance sampling,
including birds’ nests, mammal burrows, and dead deer and pigs. Plant
populations and even plant diseases are candidates for density estima-
tion using distance sampling theory. One military application is estima-
tion of the number of mines anchored to the seabed in mine fields.

1.2.2 Method of transect coverage

Distance sampling methods have found use in many situations. Specific
applications are still being developed from the existing theory. The
versatility of the method is partially due to the variety of ways in which
the transect line can be traversed. Historically, line transects were
traversed on foot by a trained observer. In recent years, terrestrial
studies have used trail bikes, all terrain vehicles, or horses. Transect
surveys have been conducted using fixed wing aircraft and helicopters;
‘ultralight’ aircraft are also appropriate in some instances.

Transect surveys in aquatic environments can be conducted by divers
with snorkels or scuba gear, or from surface vessels ranging in size from
small boats to large ships, or various aircraft, or by sleds with mounted
video units pulled underwater by vessels on the surface. Small sub-
marines may have utility in line or point transect surveys if proper
visibility can be achieved. Remote sensing may find extensive use as the
technology develops (e.g. acoustic instruments, radar, remotely control-
led cameras, multispectral scanners).
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In general, the observer can traverse a line transect at a variable speed,
travelling more slowly to search heavy cover. The observer may leave
the line and walk an irregular path, keeping within w on each side of the
line. However, the investigator must ensure that all objects on the line
are detected, and that the recorded effort L is the length of the line,
not the total distance the observer travels. Point transects are usually
surveyed for a fixed time (e.g. 10 minutes per sample point).

1.2.3 Clustered populations

Distance sampling is best explained in terms of ‘objects of interest’,
rather than a particular species of bird or mammal. Objects of interest
might be dead deer, birds’ nests, jackrabbits, etc. Often, however,
interest lies in populations whose members are naturally aggregated into
clusters. Here we will take clusters as a generic term to indicate herds of
mammals, flocks of birds, coveys of quail, pods of whales, prides of lions, -
schools of fish, etc. A cluster is a relatively tight aggregation of objects
of interest, as opposed to a loosely clumped spatial distribution of
objects. More commonly, ‘group’ is used, but we prefer ‘cluster’ to avoid
confusion with the term ‘grouped data’, defined below.

Surveying clustered populations differs in a subtle but important way
between strip transect sampling and line or point transect sampling. In
strip transect sampling, all individuals inside the strip are censused:
essentially one ignores the fact that the objects occur in clusters. In
contrast, in distance sampling with a fixed w, one records all clusters
detected if the centre of the cluster is inside the strip (i.e. 0 to w). If
the centre of the cluster is inside the strip, then the count of the size of
the cluster must include all individuals in the cluster, even if some
individuals are beyond w. On the other hand, if the centre of the cluster
is outside the strip, then no observation is recorded, even though some
individuals in the cluster are inside the strip.

In distance sampling theory, the clusters must be considered to be
the object of interest and distances should be measured from the
line or point to the geometric centre of the cluster. Then, estimation of
the density of clusters is straightforward. The sample size » is the
number of clusters detected during the survey. If a count is also made
of the number of individuals (s) in each observed cluster, one can
estimate the average cluster size, E(s). The density of individuals D can
be computed as a product of the density of clusters D, times the average
cluster size:

D = Dy - E(s)
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A complication arises if detection is a function of cluster size. This
relationship is evident if most of the clusters detected at a substantial
distance from the line or point are relatively large in size. Typically, the
estimator of Dj is still unbiased, but using the mean cluster size 5 to
estimate E(s) results in a positive bias in the estimator (because the
smaller clusters tend to go undetected toward w).

A well-developed general theory exists for the analysis of distance
data from clustered populations. Here the detection probability is
dependent on both distance from the line or point and cluster size
(this phenomenon is called size-biased sampling). Several approaches
are possible: (1) stratify by cluster size and apply the usual methods
within each stratum, then sum the estimated densities of individuals;
(2) treat cluster size as a covariate and use parametric models for the
bivariate distance—luster size data (Drummer and McDonald 1987); 3)
truncate the distance data to reduce the correlation between detection
distance and cluster size and then apply robust semiparametric line
transect analysis methods; (4) first estimate cluster density, then regress
cluster size on g(y) to estimate mean cluster size where detection
is certain (g(y) = 1); (5) attempt an analysis by individual object rather
than cluster, and use robust inference methods to allow for failure of
the assumption of independent detections. Strategy (3) is straightforward
and generally quite robust; appropriate data truncation after data
collection can greatly reduce the dependence of detection probability on
cluster size, and more severe truncation can be used for mean cluster
size estimation than for fitting the line transect model, thus reducing
the bias in 5 further. We have also found strategy (4) to be effective.

1.3 Types of data

Distance data can be recorded accurately or grouped. Rounding errors
in measurements often cause the data to be grouped to some degree,
but they must then be analysed as if they had been recorded accurately,
or grouped further, in an attempt to reduce the effects of rounding on
bias. Distances are often assigned to predetermined distance intervals,
and must then be analysed using methods developed for the analysis of
frequency data. '

1.3.1 Ungrouped data
Two types of ungrouped data can be taken in line transect surveys:
perpendicular distances x; or sighting distances r; and angles 6, If

sighting distances and angles are taken. they should be transformed to
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perpendicular distances for analysis. Only sighting distances r; are used
in the estimation of density in point transects. Trapping webs use the
same type of measurement r;, which is then the distance from the centre
of the web to the trap containing animal i. The cue counting method
also requires sighting distances r;, although only those within a sector
ahead of the observer are recorded. Angles (0 to 360° from some
arbitrary baseline) are potentially useful in testing assumptions in point
transects and trapping webs, but have not usually been taken. In cue
counting also, angles (sighting angles 6;) are not usually recorded, except
to ensure that they fall between * ¢, where 2¢ is the sector angle. In all
cases we will assume that »n distances {y, y», .... y»} are measured
corresponding to the » detected objects. Of course, n itself is usually a
random variable, although one could design a survey in which searching
continues until a pre-specified number of objects n is detected; L is then
random and the theory is modified slightly (Rao 1984).

Sample size n should generally be at least 60-80, although for some
purposes, as few as 40 might be adequate. Formulae are available to
determine the sample size that one expects to achieve with a given level
of precision (measured, for example, by the coefficient of variation). A
pilot survey is valuable in predicting sample sizes required, and will
usually show that a sample as small as 40 for an entire study is unlikely
to achieve the desired precision.

1.3.2 Grouped data

Data grouping arises in distance sampling in two ways. First, ungrouped
data y;, i=1,...,n may be taken in the field, but analysed after
deliberate grouping into frequency counts #;, i = 1, ..., u, where u is the
number of groups. Such grouping into distance intervals is often done to
achieve robustness in the analysis of data showing systematic errors such
as heaping (i.e. rounding errors). Grouping the r; and 6; data by intervals
in the field or for analysis in line transect surveys is not recommended
because it complicates calculation of perpendicular distances, although
techniques (e.g. ‘smearing’) exist to handle such grouped data.

Second, the data might be taken in the field only by distance categories
or intervals. For example, in aerial surveys it may only be practical to
count the number of objects detected in the following distance intervals:
0-20, 20-50, 50-100, 100-200, and 200-500 m. Thus, the exact distance
of an object detected anywhere from 0 to 20 m from the line or point
would not be recorded, but only that the object was in the first distance
category. The resulting data are a set of frequency counts #n; by specified
distance categories rather than the set of exact distances, and total
sample size is equal to n =X n;.
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Distance categories are defined by boundaries called cutpoints ¢;. For
u such boundaries, one has cutpoints 0 < ¢, < ¢, < ... < ¢, By conven-
tion, let ¢, =0 and ¢, =w, where w can be finite or infinite (i.e. un-
bounded). Typically in line transect sampling the intervals defined by
the cutpoints will be wider near w and narrower near the centreline.
However, in point transect sampling, the first interval may be quite wide
because the area corresponding to it is relatively small. The sum of the
counts in each distance category equals the total number of detections
n, which is the sample size. In the example above, ¥ =5, and the
cutpoints are 0<¢;=20<¢,=50<¢;3=100 < ¢, =200 < cs = w = 500.
Suppose the frequency counts n; are 80, 72, 60, 45 and 25, respectively.
Then n =X n; = 282 detections.

1.3.3 Data truncation

In designing a line transect survey, one can establish a distance y = w
whereby objects at distances greater than w are ignored. In this case,
the width of the transect to be searched is 2w, and the area searched is
of size 2wL. In point transects, a radius w can similarly be established,
giving the total area searched as knw’. In the general theory, w may be
assumed to be infinite so that objects may be detected at quite large
distances. In such cases, the width of the transect or radius around the
point is unbounded.

Distance data can be truncated (i.e. discarded) prior to analysis. Data
can be truncated beyond some distance w to delete outliers that make
modelling of the detection function g(y) difficult (Fig. 1.9). For example,
w might be chosen such that g(w) = 0.15. Such a rule might eliminate
many detections in some point transect surveys, but only relatively few
detections in line transect surveys. A simpler rule might be to truncate
5-10% of the objects detected at the largest distances. If data are
truncated in the field, further truncation may be carried out at the
analysis stage if this seems useful.

General methodology is available for ‘left-truncation’ (Alldredge and
Gates 1985). This theory is potentially useful in aerial surveys if visibility
directly below the aircraft is limited and, thus, g(0) < 1. Quang and
Lanctot (1991) provide an alternative solution to this problem. Selection
of a model for the distance data is critical under left-truncation because
estimation may be very model dependent. Other alternatives exist at the
survey design stage and we hesitate to recommend left-truncation except
in special circumstances, such as the case where there is evidence of a
wide shoulder in the detection function.
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Fig. 1.9. Histogram of the number of eastern grey kangaroos detected as a
function of distance from a line transect survey on Rotamah Island, Australia
(redrawn from Coulson and Raines 1985). These data illustrate some heaping
in the first, third and fifth distance classes, and the need to truncate observations
beyond about 50 m.

1.3.4 Units of measurement

The derivation of the theory assumes that the units of y;, L and D are
all on the same measurement scale. Thus, if the distances y; are measured
in metres, then L should be in metres and density will be in numbers
per square metre. In practice it is a simple but important matter to
convert the y;, /; or D from any unit of measure into any other; in fact,
computer software facilitates such conversions (e.g. feet to metres or
acres to square kilometres or numbers/m’ to numbers/km?).

1.3.5 Ancillary data

In some cases, there is interest in age or sex ratios of animals detected,
in which case these ancillary data must be recorded. Cluster size is a
type of ancillary data. Size of the animal, its reproductive state (e.g.
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kangaroos carrying young in the pouch), or presence of a marker or
radio transmitter are other examples of ancillary data collected during
a survey. Such ancillary information can be incorporated in a variety
of ways. If probability of detection is a function of the ancillary variable,
then it might be used to stratify the data, or it might enter the analysis
as a covariate, to improve estimation.

1.4 Known constants and parameters
1.4.1 Known constants

Several known constants are used in this book and their notation is
given below:

A = area occupied by the population of interest;

k = number of lines or points surveyed;

l; = length of the ith transect line, i=1, .. ., k;

L = total line length = X /;;

and w = the width of the area searched on each side of the line
transect, or the radius searched around a point transect, or
the truncation point beyond which data are not used in the
analysis.

1.4.2 Parameters

In line and point transect surveys there are only a few unknown
parameters of interest. These are defined below:

D = density (number per unit area);
N = population size in the study area;

E(s) = mean cluster size in the population (not the same as, but
often estimated by, the sample mean 5 of detected
objects);

f(0) = the probability density function of distances from the line,
evaluated at zero distance;

h(0) = the slope of the probability density function of distances
from the point, evaluated at zero distance;
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and  g(0) = probability of detection on the line or point, usually
assumed to be 1. For some applications (e.g. species of
whale which spend substantial periods underwater and thus
avoid detection, even on the line or point), this parameter
must be estimated from other types of information.

Density D may be used in preference to population size N in cases
where the size of the area is not well defined. Often an encounter rate
n/L is computed as an index for sample size considerations or even as
a crude relative density index.

1.5 Assumptions

Statistical inference in distance sampling rests on the validity of several
assumptions. First, the survey must be competently designed and con-
ducted. No analysis or inference theory can make up for fundamental
flaws in survey procedure. Second, the physical setting is idealized:

1. Objects are spatially distributed in the area to be sampled according
to some stochastic process with rate parameter D (= number per unit
area).

2. Randomly placed lines or points are surveyed and a sample of n
objects is detected, measured and recorded.

It is not necessary that the objects be randomly (i.e. Poisson) dis-
tributed. Rather, it is critical that the line or point be placed randomly
with respect to the distribution of objects. Random line or point
placement ensures a representative sample of the relevant distances and
hence a valid density estimate. The use of transects along trails or roads
does not constitute a random sample and represents poor survey practice.
In practice, a systematic grid of lines or points, randomly placed in the
study area, suffices.

Three assumptions are essential for reliable estimation of density from
line or point transect sampling. These assumptions are given in order
from most to least critical:

1. Objects directly on the line or point are always detected (i.e. they
are detected with probability 1, or g(0) = 1).

2. Objects are detected at their initial location, prior to any movement
in response to the observer.

3. Distances (and angles where relevant) are measured accurately (un-
grouped data) or objects are correctly counted in the proper distance
category (grouped data).
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Some investigators include the assumption that one must be able to
identify the object of interest correctly. In rich communities of song-
birds, this problem is often substantial. Marine mammals often occur
in mixed schools, so it is necessary both to identify all species present
and to count the number of each species separately. In rigorous theoret-
ical developments, assumption (2) is taken to be that objects are im-
mobile. However, slow movement relative to the speed of the observer
causes few problems in line transects. In contrast, responsive movement
of animals to the approaching observer can create serious problems. In
point transects, undetected movement of animals is always problematic
because the observer is stationary.

The effects of partial failure of these assumptions will be covered at
length in later sections, including the condition g(0) < 1; estimation in
this circumstance is one of the main areas of current methodological
development. All of these assumptions can be relaxed under certain
circumstances. These extensions are covered in the following chapters.
We note that no assumption is made regarding symmetry of g(y) on the
two sides of the line or around the point, although extreme asymmetry
would be problematic. Generally, we believe that asymmetry near the
line or point will seldom be large, although topography may sometimes
cause difficulty. If data are pooled to give a reasonable sample size,
such problems can probably be ignored.

1.6 Fundamental concept

It may seem counterintuitive that a survey be conducted, fail to detect
perhaps 60-90% of the objects of interest in the survey plots (strips of
dimension L by 2w or circular plots of size mw?), and still obtain accurate
estimates of population density. The following two sections provide insights
into how distances are the key to the estimation of density when some of
the objects remain undetected. We will illustrate the intuitive ideas for the
case of line transect sampling; those for point transects are similar.

Consider an arbitrary area of size 4 with objects of interest distributed
according to some random process. Assume a randomly placed line and
grouped data taken in each of eight 1-foot distance intervals from the
line on either side, so that w = 8. If all objects were detected, we would
expect, on average, a histogram of the observations to be uniform as
in Fig. 1.10a. In other words, on average, one would not expect many
more or fewer observations to fall, say, within the seventh interval than
the first interval, or any other interval.

In contrast, distance data from a survey of duck (A4nas and Aythya
spp.) nests at the Monte Vista National Wildlife Refuge in Colorado.
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Fig. 1.10. Conceptual basis for line transect sampling: (a) the expected number
of objects detected in eight distance classes if no objects were left undetected;
(b) real data where a tendency to detect fewer objects at greater distances from
the line can be noticed; (c) simple methods can be used to estimate the proportion
of the objects left undetected (shaded area). The proportion detected, P, can be
estimated from the distance data.
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USA (Anderson and Pospahala 1970) are shown in Fig. 1.10b as a
histogram. Approximately 10 000 acres of the refuge were surveyed using
L =1600 miles of transect, and an area w =8 feet on each side of the
transect was searched. A total of 534 nests was found during 1967 and
1968 and the distance data were grouped for analysis into 1-foot
intervals. Clearly there is evidence from this large survey that some nests
went undetected in the outer three feet of the area searched. Visual
inspection might suggest that about 10% of the nests were missed during
the survey. Note that the intuitive evidence that nests were missed is
contained in the distances, here plotted as a histogram.

Examination of such a histogram suggests that a ‘correction factor’,
based on the distance data, is needed to correct for undetected objects.
Note that such a correction factor would be impossible if the distances
(or some other ancillary information) were not recorded. Anderson and
Pospahala (1970) fitted a simple quadratic equation to the midpoints of
each histogram class to obtain an objective estimate of the number of
nests not detected (Fig. 1.10c). Their equation, fitted by least squares,
was

frequency = 77.05 — 0.4039x?

The proportion (P) of nests detected was computed as the unshaded
area in Fig. 1.10c divided by the total area (shaded + unshaded). (The
areas were computed using calculus, but several simpler approximations
could be used.) The estimated proportion of nests detected from 0 to 8
feet can be computed to be 0.888, suggesting a correction factor of 1.126
(= 1/0.888) be applied to the total count of #n = 534. Thus, the estimated
number of nests within eight feet of the sample transects was n/P = 601,
and because the transects sampled 5.5% of the refuge, the estimate of the
total number of nests on the refuge during the 2-year period was
601/0.055= 10 927. This procedure provides the intuition that distances
are important in reliable density estimates even if most of the objects
are not detected. The Anderson—Pospahala method is no longer recom-
mended since superior analysis methods are now available, but it illus-
trates the principle underlying the theory. The next two chapters will
put this intuitive argument on a more formal basis.

1.7 Detection

When a survey has been conducted, n objects will have been detected.
Considerable confusion regarding the meaning of # exists in the literature.
Here an attempt is made to factor » into its fundamental components.
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Burnham et al. (1981), Dawson (1981) and Morgan (1986: 9-25) give a
discussion of these issues. Ramsey (1981) provides an informative example.

The number detected, n, is a confounding of true density and prob-
ability of detection. The latter is a function of many factors, including
cue production by, or characteristics of, the object of interest, observer
effectiveness, and the environment. Of these factors, one could hope
that only the first, density, influences the count. While this might be
ideal, it is rarely true.

1.7.1 Cue production

The object of interest often provides cues that lead to its detection by
the survey observer. Obvious cues may be a loud or distinctive song or
call. A splash made by a marine mammal or flock of sea birds above
a school of dolphins are other examples of cues. Large size, bright or
contrasting colouring, movement or other behaviour may be causes for
detection. These cues are frequently species-specific and may vary by
age or sex of the animal, time of day, or season of the year. Thus, the
total count n can vary for reasons unrelated to density (Mayfield 1981;
Richards 1981; Bollinger et al. 1988). Most often, the probability of
detection of objects based on some cue diminishes as distance from the
observer increases.

1.7.2 Observer effectiveness

Observer variability is well known in the literature on biological surveys.
Interest in the survey, training and experience are among the dominant
reasons why observers vary widely in their ability to detect objects of
interest. However, both vision and hearing acuity may be major vari-
ables which are often age-specific (Ramsey and Scott 1981a; Scott, et al.
1981). Fatigue is a factor on long or difficult surveys. Even differing
heights of observers may be important for surveys carried out on foot,
with tall observers detecting objects at a higher rate. Generally, the
detection of objects decreases with increasing distance due to observer
effectiveness.

1.7.3 Environment

Environmental variables often influence the number of objects detected
(Best 1981; Ralph 1981; Verner 1985). The habitat type and its pheno-
logy are clearly important (Bibby and Buckland 1987). Physical condi-
tions often inhibit detection: wind, precipitation, darkness, sun angle,
etc. Cue production varies by time of day, which can have a tenfold
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effect in the detectability of some avian species (Robbins 1981; Skirvin
1981). Often, these variables interact to cause further variability in
- detection and the count n.

Distance sampling provides a general and comprehensive approach to
the estimation of population density. The distances yi allow reliable
estimates of density in the face of variability in detection due to factors
such as cue production, observer effectiveness and environmental dif-
ferences. The specific reasons why an object was not detected are
unimportant. Furthermore, it seems unnecessary to research the in-
fluence of these environmental variables or to standardize survey proto-
col for them, if distances are taken properly and appropriate analysis
carried out. Distance sampling methods fully allow for the fact that
many objects will remain undetected, as long as they are not on the line
or point. For example, in Laake’s stake surveys (Burnham et al. 1980)
only 27-67% of the stakes present were detected and recorded by various
surveyors traversing the line. Still, accurate estimates of stake density
were made using distance sampling theory.

1.8 History of methods
1.8.1 Line transects

In the 1930s, R.T. King recognized that not all animals were seen on
strip transect surveys and presumably tried to estimate an effective width
of the transect. He recognized that distances were useful and used the
average sighting distance 7 as the effective width surveyed (Leopold
1933; Gates 1979). The early literature tried to conceptualize the idea
of effective area sampled. Finally, Gates (1979) provided a formal
definition for the effective strip width (p): the distance for which unseen
animals located closer to the line than p equals the number of animals
seen at distances greater than w. Then, D = n/4’, where 4’ = 2uL and is
the estimated area ‘effectively’ sampled. Note that p is actually one-half
the effective strip width, i.e. only one side of the line.

Kelker (1945) took an alternative approach that is still sometimes
used. Instead of trying to retain the total sample of n distances and
estimate the ‘area’ effectively sampled, Kelker determined a strip width
A on each side of the transect centreline, within which all animals were
probably seen. The value of A was judged subjectively from an inspec-
tion of the histogram of the perpendicular distance data. Once A was
chosen, density was estimated as a strip transect with W = A and »n the
number of objects detected from 0 to A on each side of the line transect.
Distance data exceeding A were not used further.
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No attempts were made to formulate a firm conceptual and mathematical
foundation for line transects until Hayne’s paper in 1949. All estimators
then in use were ad hoc and generally based on either the concept of the
effective strip width or the related idea of determining a strip width narrow
enough such that no animals were undetected in that strip. Variations of
these approaches are still being used and sometimes ‘rediscovered’ today,
even though better methods have existed for many years.

Hayne (1949) provided the first estimator that has a rigorous justifi-
cation in statistical theory. While Hayne’s method rests on only the use
of sighting distances r;, the critical assumption made can only be tested
using the sighting angles 6;. Hayne’s (1949) method is poor if 6 is not
approximately 32.7° and may not perform well even if 0 falls close to
this value, i.e. not a robust method.

After Hayne’s (1949) paper, almost no significant theoretical advances
appeared until 1968. During that 20 year period, line transect sampling
was used frequently, and on a variety of species. The assumptions behind
the method were sharpened in the wildlife literature and some evalu-
ations of the method were presented (e.g. Robinette er al. 1956).

In 1968, two important papers were published in which some of the
basic ideas and conceptual approaches to line transect sampling finally
appeared (Eberhardt 1968; Gates et al. 1968). Gates et al. (1968)
published the first truly rigorous statistical development of a line tran-
sect estimator, applicable only to untruncated and ungrouped perpen-
dicular distance data. They proposed that f(x) be a negative exponential
form, f(x)=a-exp(-ax), where a is an unknown parameter to be
estimated. Under that model, f(0) = a. Gates et al. (1968) developed the
optimal estimator of a based on a sample of perpendicular distances
and provided an estimator of the sampling variance. For the first time,
rigorous consideration was given to questions such as optimal estimation
under the model, construction of confidence intervals, and tests of
assumptions. The one weakness was that because the assumed detection
function was very restrictive and might easily be inappropriate, the
resulting estimate of density could be severely biased.

In contrast, Eberhardt (1968) conceptualized a fairly general model in
which the probabilities of detection decreased with increasing perpen-
dicular distance. He reflected on the shape of the detection function
g(x), and suggested both that there was a lack of information about the
appropriate shape and that the shape might change from survey to
survey. Consequently, he suggested that the appropriate approach would
be to adopt a family of curves to model g(x). He suggested two such
families, a power series and a modified logistic, both of which are fairly
flexible parametric functions. His statistical development of these models
was limited, but important considerations had been advanced.
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Since 1968, line transect sampling has been developed along rigorous
statistical inference principles. Parametric approaches to modelling g(x)
were predominant, with the notable exception of Anderson and Pospa-
hala (1970), who rather inadvertently introduced some of the basic ideas
that underlie a non-parametric or semiparametric approach to the
analysis of line transect data. Emlen (1971) proposed an ad hoc method
that found use in avian studies.

A general model structure for line transect sampling based on perpen-
dicular distances was presented by Seber (1973: 28-30). For an arbitrary
detection function, Seber gave the probability distribution of the distan-
ces xi, ..., X, and the general form of the estimator of animal density
D. This development was left at the conceptual stage and not pursued
to the final step of a workable general approach for deriving line
transect estimators, and the approach was still based on the concept of
an effective strip width.

More work on sighting distance estimators appeared (Gates 1969;
Overton and Davis 1969). There was a tendency to think of approaches
based on perpendicular distances as appropriate for inanimate or non-
responsive objects, whereas methods for flushing animals were to be
based on sighting distances and angles (Eberhardt 1968, 1978a). This
artificial distinction tended to prevent the development of a unified
theory for line transect sampling. By the mid-1970s, line transect sam-
pling remained a relatively unexplored methodology for the estimation
of animal density. Robinette et al. (1974) reported on a series of field
evaluations of various line transect methods. Their field results were
influential in the development of the general theory.

Burnham and Anderson (1976) pursued the general formulation of
line transect sampling and gave a basis for the general construction
of line transect estimators. They developed the general result
D=n - f(0)/2L, wherein the parameter f(0) is a well-defined function of
the distance data. The key problem of line transect data analysis was
seen to be the modelling of g(x) or f(x) and the subsequent estimation
of f(0). The nature of the specific data (grouped or ungrouped, truncated
or untruncated) is irrelevant to the basic estimation problem. Conse-
quently, their formulation is applicable for the development of any
parametric or semiparametric line transect estimator. Further, the
general theory is applicable to point transect sampling with some modi-
fication (Buckland 1987a).

Burnham and Anderson’s (1976) paper heralded a period of new
statistical theory. Major contributions published during the 1976-80
period include Schweder (1977), Crain ez al. (1978, 1979), Pollock (1978),
Patil ez al. (1979b), Quinn (1979), Ramsey (1979), Seber (1979) and
Quinn and Gallucci (1980). Other papers developing methodology during
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this short period include Anderson et al. (1978, 1979, 1980), Eberhardt
(1978a, b, 1979), Sen et al. (1978), Burnham et al. (1979), Patil et al.
(1979a) and Smith (1979). Anderson er al. (1979) provided guidelines
for field sampling, including practical considerations. Burdick (1979)
produced an advanced method to estimate spatial patterns of abundance
from line transect sampling where there are major gradients in popula-
tion density. Laake e al. (1979) and Gates (1980) produced compre-
hensive computer software packages, TRANSECT and LINETRAN
respectively, for the analysis of line transect data.

Gates (1979) provided a readable summary of line transect sampling
theory and Ramsey’s (1979) paper presents a more mathematical treat-
ment of parametric approaches. Hayes (1977) gave an excellent summary
of methodology and provided many useful insights at that time.

Burnham et al. (1980) published a major monograph on line transect
sampling theory and application. This work provided a review of pre-
vious methods, gave guidelines for field use, and identified a small class
of estimators that seemed generally useful. Usefulness was based on four
criteria: model robustness, pooling robustness, a shape criterion, and
estimator efficiency. Theoretical and Monte Carlo studies led them to
suggest the use of estimators based on the Fourier series (Crain ez al.
1978, 1979), the exponential power series (Pollock 1978), and the ex-
ponential quadratic model.

Since 1980, more theory has been developed on a wide variety of
issues. Seber (1986) and Ramsey er al. (1988) give brief reviews. Major
contributions during the 1980s include Butterworth (1982a, b), Patil et
al. (1982), Hayes and Buckland (1983), Buckland (1985), Burnham et
al. (1985), Johnson and Routledge (1985), Quinn (1985), Drummer and
McDonald (1987), Ramsey et al. (1987), Thompson and Ramsey (1987)
and Zahl (1989). Other papers during the decade include Buckland
(1982), Stoyan (1982), Burnham and Anderson (1984), Anderson et al.
(1985a, b) and Gates et al. (1985). Several interesting field evaluations
where density was known have appeared since 1980, including Burnham
et al. (1981), Hone (1986, 1988), White et al. (1989), Bergstedt and
Anderson (1990) and Otto and Pollock (1990). In addition, other field
evaluations where the true density was not known have been published,
but these results are difficult to interpret.

A great deal of statistical theory has been developed since 1976, but
new theory may have started to decrease by the late 1980s. Field studies
using line transect sampling have increased and new applications have
appeared in the literature. No attempt to discuss all of the recent
developments will be given in this chapter. At the present time, there
are several good models for fitting g(x). There now exist sound ap-
proaches for analysing grouped or ungrouped data with truncated or
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untruncated transect widths, under various extensions (e.g. clustered
populations). Estimation based on sighting distances and angles has been
shown to be problematic and we recommend transforming such data to
perpendicular distances prior to analysis. Current areas of development
include estimation when g(0) < 1, when responsive movement to the
observer occurs, when the objects occur in clusters, leading to size-biased
sampling, and when there is covariate information on factors such as
sighting conditions or habitat.

1.8.2 Point transects

Point transect sampling has had a much shorter history. The method
can be traced to the paper by Wiens and Nussbaum (1975) and their
application of what they called a variable circular plot census. They drew
heavily on the paper on line transects by Emlen (1971). Ramsey and
Scott (1979) provided a statistical formalism for the general method
and noted several close relationships to line transect sampling. Following
the ‘effective area’ thinking, they noted ‘“The methods are similar in spirit
to line transect methods, in that the total number of detections divided
by an estimate of the area surveyed is the estimate of the population
density.” Ramsey and Scott (1979) provided a summary of the assump-
tions and derived a general theory for density estimation, including
sampling variances. This represented a landmark paper at the time.

Reynolds et al. (1980) presented additional information on the variable
circular plot method. Burnham ez al. (1980) and Buckland (1987a) also
noted the close links between line transects and point transects (i.e.
variable circular plots). Buckland (1987a) developed other models, evalu-
ated the Fourier series, Hermite polynomial and hazard-rate estimators,
and provided an evaluation of the efficiency of binomial models (where
objects of interest are grouped into two categories, within or beyond a
specified distance ¢,). The general theory for line and point transects is
somewhat similar because they both involve sampling distances. Thus,
the term point transect will be used rather than the variable circular
plot ‘census’.

1.9 Program DISTANCE

The computation for most estimators is arduous and prone to errors if
done by hand. Estimators of sampling variances and covariances are
similarly tedious. Data should be plotted and estimates of f(y) should
usually be graphed for visual comparison with the observed distance
data.
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Program DISTANCE (Laake et al. 1993) was developed to allow
comprehensive analyses of the type of distance data we discuss here.
The program is written in FORTRAN and runs on any IBM PC
compatible microcomputer with 640 K of RAM. A math coprocessor is
desirable, but not required. Program DISTANCE allows researchers to
focus on the biology of the population, its habitat and the survey
operation; one can concentrate on the results and interpretation, rather
than on computational details. Almost all the examples presented in this
book were analysed using program DISTANCE; the distance data and
associated program commands for some of the examples are available
as an aid to data analysts. The program is useful both for data analysis
and as a research tool. Only occasional references to DISTANCE are
made throughout this book because a comprehensive manual on the
program is available (Laake er al. 1993).
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