BIOESTATÍSTICA

Análise de correlação e regressão

O que é analisado?

- Ao optar por este tipo de análise (correlação ou regressão), o pesquisador tem em mente alguns objetivos.
- A análise de correlação é utilizada para realizar análises exploratórias e/ou descritivas, enquanto que com a análise de regressão são realizadas as análises explicativas e preditivas.
- É possível fazer as análises exploratórias e descritivas também através da análise de regressão, mas é um processo demorado e muitas vezes o recomendado é a análise de correlação. Quando se tem uma grande quantidade de variáveis deve-se iniciar pela análise de correlação.

Análise de correlação

 Existe uma associação estatística entre duas variáveis? As duas variáveis são independentes (ou seja, qual o grau da variação das duas juntas)?

Coeficiente de Correlação

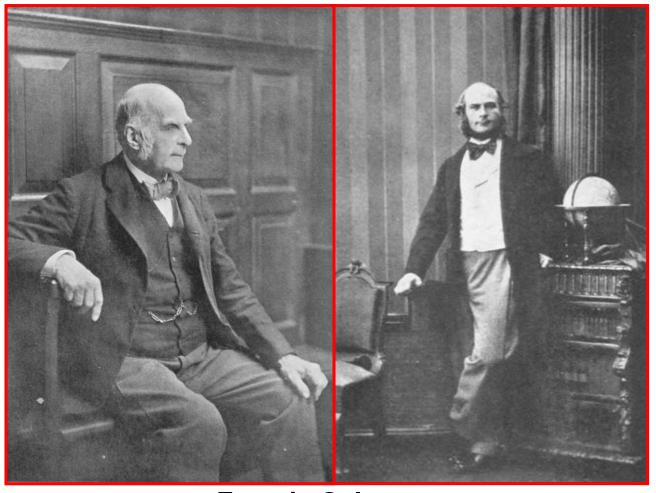
- A relação entre duas ou mais variáveis pode ser explorada através da análise de correlação.
- A análise de correlação fornece o coeficiente de correlação de **Pearson** (r) ou o coeficiente de correlação de postos ou ordens de **Spearman** (dados ordenados) e a sua significância pelo teste t de Student com n-2 graus de liberdade.
- H_0 : r = 0; H_A : $r \ne 0$.
- Se o coeficiente de correlação for muito baixo (inferior a ±0,20) e se o teste de hipótese não for significativo (teste t de Student) dificilmente se deve ir avante com as demais análises descritivas, explicativas e preditivas.

Francis Galton

- Foi Galton quem inventou a análise de correlação e de regressão (conceito).
- Geógrafo, meteorologista, inventor da identificação pela impressão digital, eugenista.
- Sobrinho de Charles Darwin, ajudou o tio na análise e interpretação da teoria evolucionista.

Biografia de Galton (1822-1911)

Inglês de uma família muito rica, após a morte do pai herdou uma fortuna com a qual realizou diversos experimentos e publicou diversos trabalhos.



Francis Galton

Karl Pearson (1857-1936)

Fez uma grande contribuição para o desenvolvimento da Estatística como uma disciplina científica séria e independente. Ele foi o fundador do Departamento de Estatística Aplicada (Department of Applied Statistics) na University College Londres em 1911. Foi Pearson quem formalizou o método de Galton, em 1896.

O <u>coeficiente de correlação produto-</u> momento de Pearson

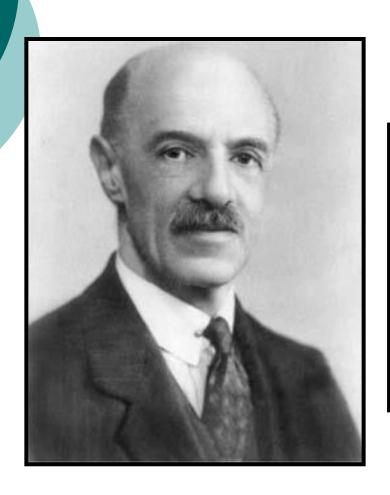
foi a primeira medida de <u>força de</u> <u>associação</u> a ser introduzido em estatística. (Wikipedia)

Pearson com Galton, em 1900

Charles Edward Spearman (1863-1945)

- Desenvolveu em 1904 o coeficiente de correlação de Spearman (baseado em postos ou ordens).
- Foi um <u>psicólogo inglês</u> conhecido pelo seu trabalho na área da <u>estatística</u>, como um pioneiro da <u>análise fatorial</u> e pelo <u>coeficiente de</u> <u>correlação de postos de Spearman</u>. Também foi influenciado pelas ideias de Galton.
- Ao encontrar dificuldades em calcular o Coeficiente de Correlação de Pearson, propôs transformar os dados em ordens ou postos e depois calcular o valor do coeficiente.

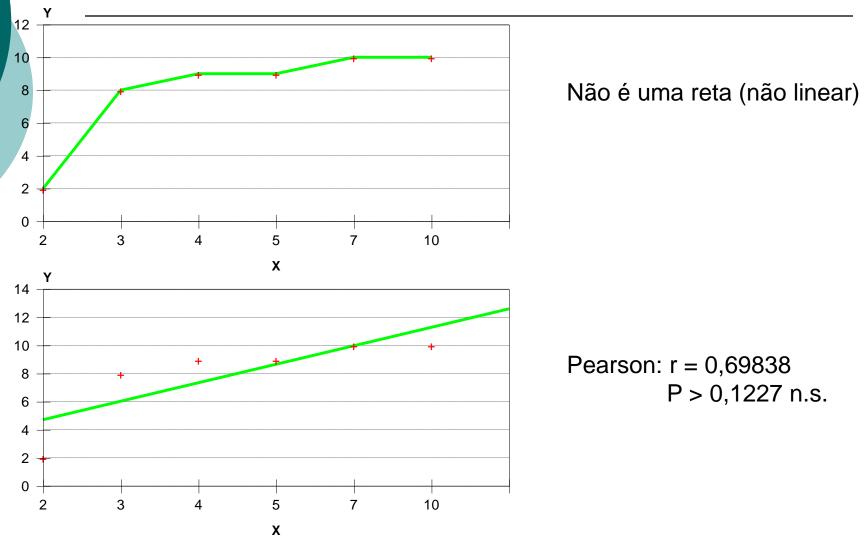
Coeficiente de Correlação de Spearman



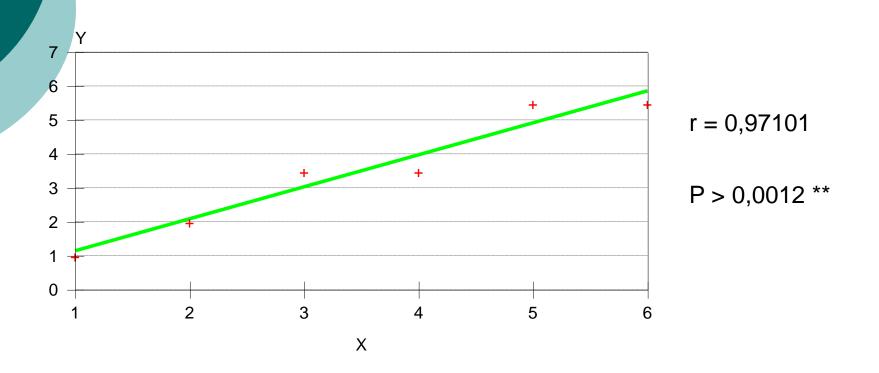
O coeficiente de correlação de Pearson detecta se existe uma correlação linear entre duas variáveis. As variáveis devem ser contínuas.

O coeficiente de correlação de Spearman detecta se existe correlação entre duas variáveis (esta relação pode ser não linear). As variáveis podem ser discretas ou contínuas.

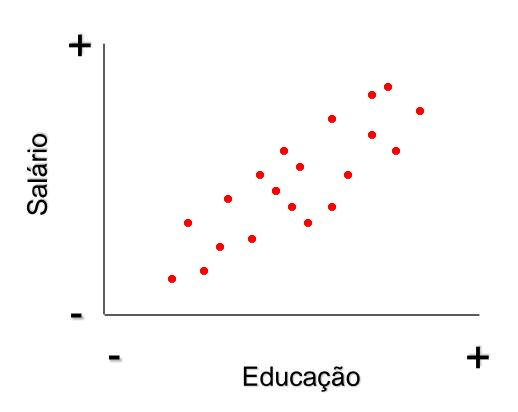
Exemplo



Spearman

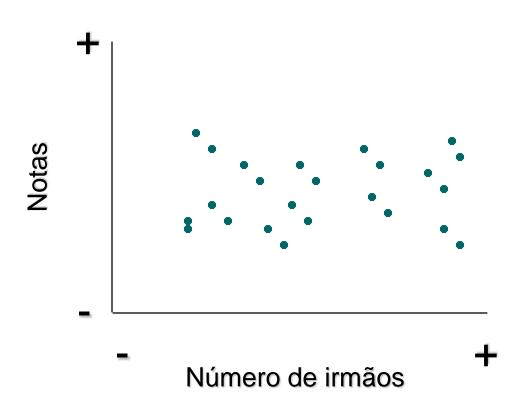


Correlação positiva: Educação e salário.



Correlação negativa: festa com notas dos alunos.

Sem correlação: notas dos alunos e número de irmãos.



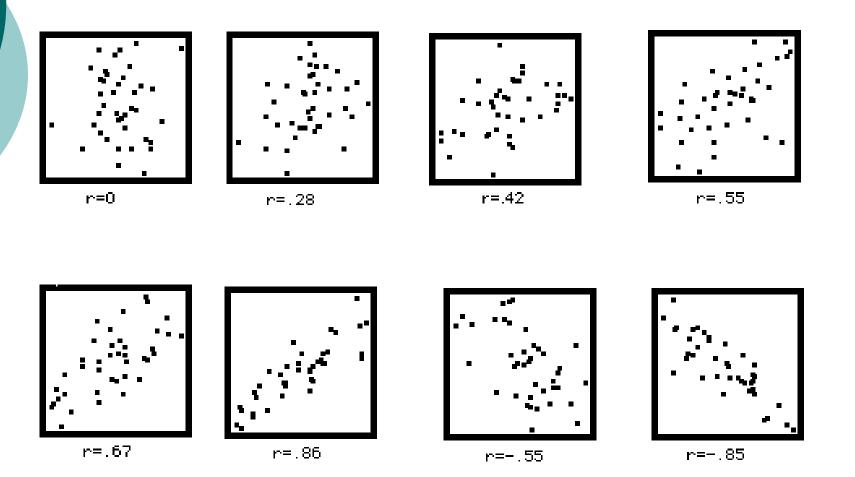
Teste de correlação.

 O coeficiente de correlação de Pearson, r, é calculado pela fórmula:

$$r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{(\sum X^2 - \frac{(\sum X)^2}{N}) - (\sum Y^2 - \frac{(\sum Y)^2}{N})}}$$

- Os valores do coeficiente de correlação sempre variarão de -1 a +1.Os maiores valores (se negativo ou positivo) implicam em maior grau de correlação.
- Os teste de correlção são realizados pelo SAS através do Proc Corr.

Valores de r e os gráficos respectivos



O PROC CORR DO SAS

```
DATA SOLO;
INPUT PONTO PH MO P CA;
 1 5.0 39 9 27
 2 5.1 40 7 23
                     Pearson é o default. Para Spearman especificar
 3 4.7 37 8 24
 4 5.9 45 10 31
 5 4.9 38 7 22
 6 4.5 35 11 33
 7 6.0 46 9 28
 8 6.2 48 10 29
 9 5.2 40 6 18
10 4.0 31 7 20
ODS PDF FILE='C:\Arquivos2015\Bioestatistica2015\SOLO.PDF';
TITLE2'*** Análise de correlação entre variáveis do solo ***';
TITLE4'*** Experimento na Fazenda Cerradinho - Catanduva - SP ***';
PROC CORR DATA=SOLO;
VAR PH MO P CA;
RUN;
ODS PDF CLOSE;
```

RESULTADO DA ANÁLISE DE CORRELAÇÃO

The SAS System

*** Análise de correlação das propriedades do solo ***

*** Experimento na Fazenda Cerradinho - Catanduva - SP ***

The CORR Procedure

4 Variables:	PH	MO	P	CA
--------------	----	----	---	----

Simple Statistics								
Variable	le N Mean Std Dev Sum Minimum M					Maximum		
PH	10	5.14347	0.71111	51.43474	3.98277	6.20259		
MO	10	39.84571	5.29896	398.45707	31.06792	47.71510		
P	10	8.28539	1.55779	82.85389	5.85324	10.55488		
CA	10	25.39057	4.73955	253.90574	18.25328	32.50041		

Pearson Correlation Coefficients, N = 10 Prob > r under H0: Rho=0								
	PH MO P CA							
PH	1.00000	0.99918	0.43796	0.44121				
		<.0001	0.2055	0.2018				
MO	0.99918	1.00000	0.42892	0.43180				
	<.0001		0.2161	0.2127				
P	0.43796	0.42892	1.00000	0.99835				
	0.2055	0.2161		<.0001				
CA	0.44121	0.43180	0.99835	1.00000				
	0.2018	0.2127	<.0001					

Pearson ou Spearman?

- Os dois coeficientes fornecem informações importantes, principalmente durante a fase das análises exploratórias quando não conhecemos o comportamento dos dados.
- Os valores do coeficiente já são suficientes para tomar decisão sobre o prosseguimento das análises (dedutivas, explicativas e preditivas)? 0,50, por exemplo?

Análise de regressão: estudo da relação linear entre duas ou mais variáveis.

A mais usada das técnicas estatísticas para análise de dados.

Também chamada de Análise de Regressão Linear

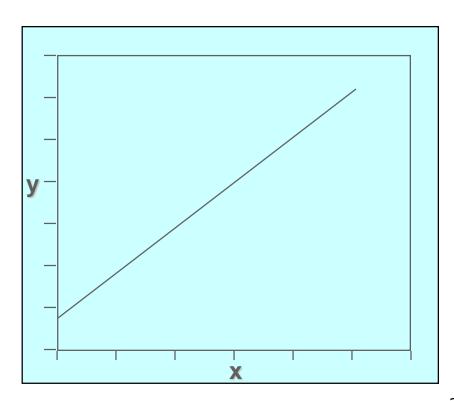
Teste de hipótese e predição

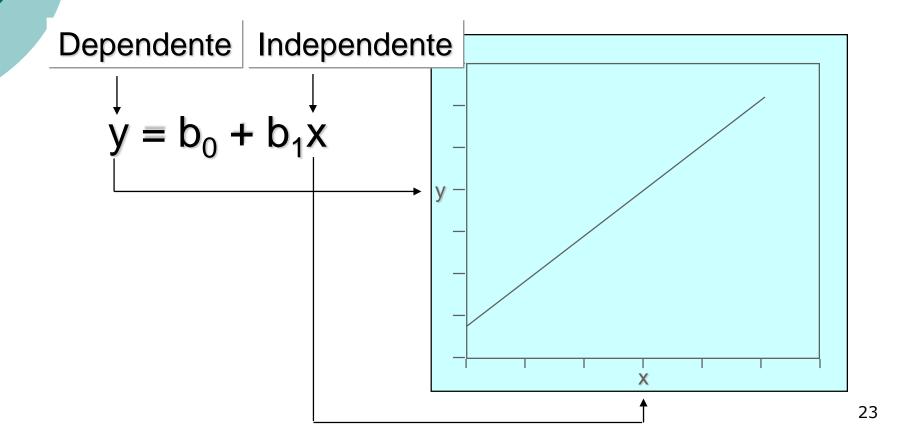
Por quê usar regressão?

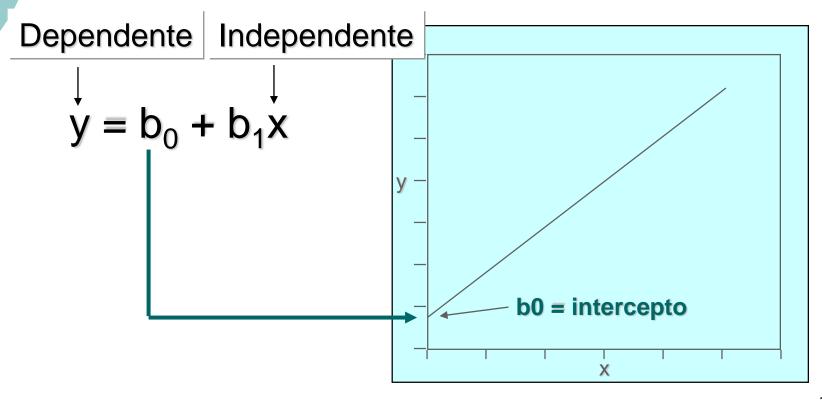
- Uma variável ou conjunto de variáveis independentes ou preditoras possuem um efeito causal sobre a variável dependente ou resposta (exemplo: será que a temperatura influencia na germinação das sementes)?
- As suposições sobre a normalidade de Y, independência das observações e normalidade dos erros são cruciais.

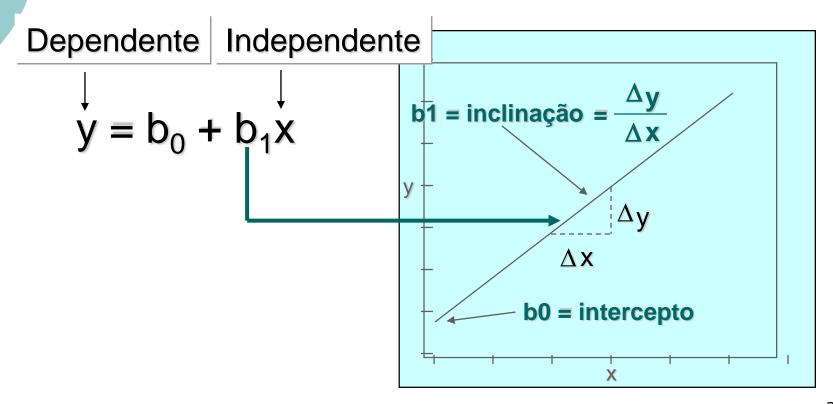
Regressão Linear Simples

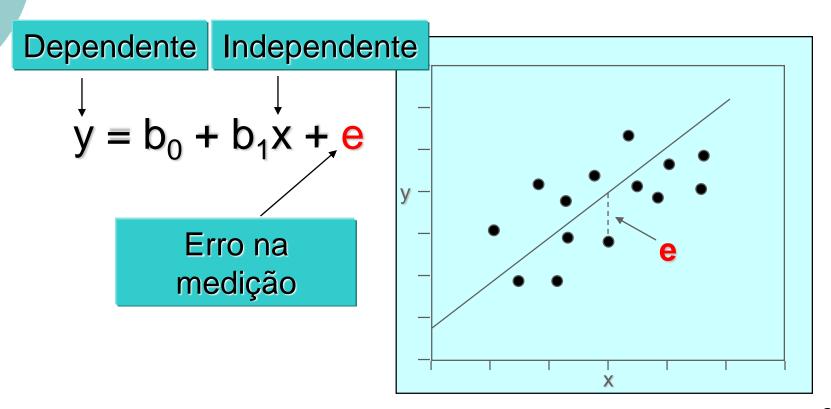
$$y = b_0 + b_1 x$$









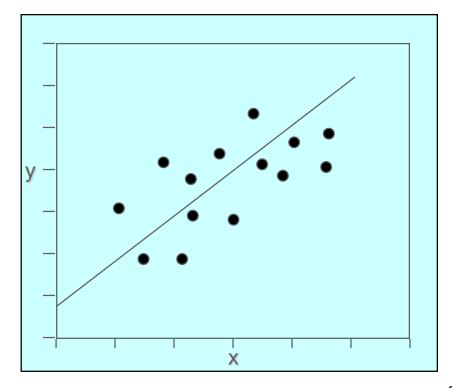


O modelo de regressão linear

Fórmula para a linha reta

$$y = b_0 + b_1 x + e$$

Procuramos estimar esses valores



O método dos quadrados mínimos.

- O Método dos
 Quadrados Mínimos
 Ordinários (OLS)
 encontra o modelo
 linear que minimiza a
 soma do quadrado
 dos erros.
- Este modelo apresenta a melhor explicação/predição dos dados.

SQNC =
$$\sum_{i} (\widehat{Y}_{i} - Y_{i})^{2}$$

= $\sum_{i} e_{i}^{2}$

Fórmulas para calcular os valores dos parâmetros pelo MQMO.

$$\widehat{b}_{1} = \frac{n\sum X_{i}Y_{i} - \sum X_{i}\sum Y_{i}}{n\sum X_{i}^{2} - (\sum X_{i})^{2}}$$

$$= \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum (X_{i} - \overline{X})^{2}}$$

$$\widehat{a} = \overline{Y} - \widehat{b}_{1}\overline{X}$$

Testes de inferência

- Teste t para os coeficientes.
- Teste F para o modelo.

Medidas de ajustamento do modelo

- O Coeficiente de Correlação.
- O R² (Coeficiente de determinação).

$$R^{2} = \left(1 - \frac{\text{SQResíduo}}{\text{SQTotal}}\right) \times 100$$

Programa SAS para análise de regressão simples

```
DATA A;
INPUT DAP BIOMASSA;
DATALINES;
12 34
14 45
23 89
56 138
87 379
;
PROC REG DATA = A;
MODEL BIOMASSA = DAP;
RUN;
```

Outros modelos

```
DATA A;
 INPUT DAP BIOMASSA;
 LBIOMA=LOG(BIOMASSA);
 LDAP=LOG(DAP);
DATALINES;
0 12 34
                          Colocar os comandos ODS e
0 14 45
                                    TITLE
0 23 89
0 56 138
0 87 379
0
PROC REG DATA = A PLOTS(ONLY)=PREDICTIONS(X=DAP);
  MODEL LBIOMA = DAP;
 MODEL LBIOMA = LDAP;
  RUN;
```

The SAS System

*** ANÁLISE DE REGRESSÃO - BIOMASSA E DAP ***

The REG Procedure

Model: MODEL1

Dependent Variable: LBIOMA

Number of Observations Read	5
Number of Observations Used	5

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	1	3.43791	3.43791	44.26	0.0069		
Error	3	0.23302	0.07767				
Corrected Total	4	3.67092					

Root MSE	0.27870	R-Square	0.9365
Dependent Mean	4.53729	Adj R-Sq	0.9154
Coeff Var	6.14236		

Parameter Estimates								
		Parameter Standard						
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	3.43881	0.20687	16.62	0.0005			
DAP	1	0.02861	0.00430	6.65	0.0069			

The SAS System *** ANÁLISE DE REGRESSÃO - BIOMASSA E DAP ***

The REG Procedure Model: MODEL2

Dependent Variable: LBIOMA

Number of Observations Read	
Number of Observations Used	5

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	1	3.47696	3.47696	53.78	0.0052		
Error	3	0.19396	0.06465				
Corrected Total	4	3.67092	·				

Parameter Estimates							
		Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	0.93137	0.50469	1.85	0.1622		
LDAP	1	1.07635	0.14677	7.33	0.0052		

Root MSE	0.25427	R-Square	0.9472
Dependent Mean	4.53729	Adj R-Sq	0.9295
Coeff Var	5.60405		

Gráfico do modelo 1

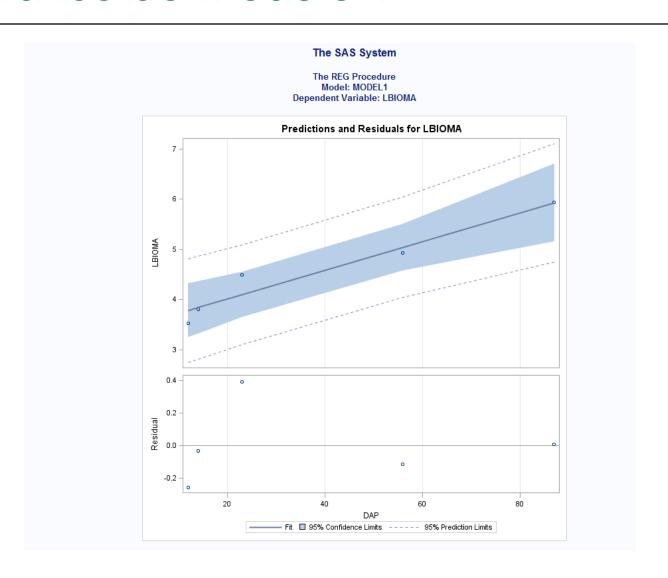
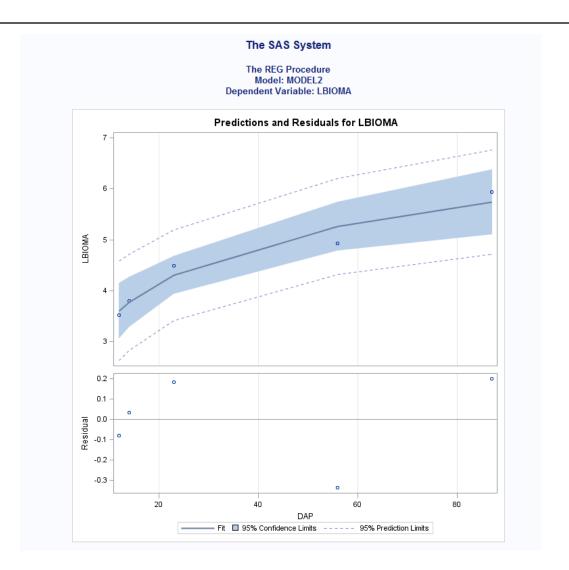


Gráfico do modelo 2



Critérios para a seleção de modelo.

- Se possível justificar através de algum valor quantificável (R₂, teste F, por exemplo)
- A experiência pode ser importante (conhecimento sobre o assunto)
- Algumas ideias pré-concebidas podem ser importantes.
- Como o modelo pode ser aplicado na prática (modelos complexos podem ser de difícil aceitação ou utilização)
- **Seleção de Modelo**: a tarefa de selecionar um modelo matemático a partir de diversos modelos **potenciais**, com fortes **evidências**.

Regressão Linear Múltipla.

O modelo de regressão linear múltipla é uma extensão do modelo simples com apenas duas variáveis (independente e dependente). Ao adicionar no modelo mais uma variável independente é criado um espaço de mútipla dimensão. Por exemplo, se existirem duas variáveis independentes estamos ajustando os pontos a um "plano no espaço".

O modelo linear básico.

$$Y_i = a + b_1 X_{1i} + b_2 X_{2i} + ... + b_k X_{ki} + e_i$$

As suposições do modelo:

- Os erros possuem a distribuição normal.
- Os resíduos são homoscedásticos.
- Não há correlação serial.
- Não há multicolinearidade.
- As variáveis independentes são fixas. (não-estocásticas)
- Existem mais dados que estimativas de parâmetros.
- o O modelo é linear.

PROGRAMA SAS PARA ANÁLISE DE REGRESSÃO MÚLTIPLA

```
o DATA A;
```

- INPUT DAP ALT BIOMASSA;
- LBIOMA=LOG(BIOMASSA);
- LDAP=LOG(DAP);
- LALT=LOG(ALT);
- o DATALINES;
- 0 12 10 34
- 0 14 11 45
- 0 18 9 69
- 0 23 16 89
- 0 31 14 80
- o 56 18 138
- 0 66 19 190
- 0 87 23 379
- 0 91 22 408
- 0 :
- **PROC REG** DATA = A PLOTS(ONLY)=PREDICTIONS(X=DAP);
- MODEL BIOMASSA = DAP ALT;
- O MODEL LBIOMA = DAP ALT;
- MODEL LBIOMA = LDAP LALT;
- o RUN;

Colocar os comandos ODS e TITLE

The REG Procedure

Model: MODEL1

Dependent Variable:

BIOMASSA

Number of Observations Read	9
Number of Observations Used	9

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	145243	72622	30.21	0.0007	
Error	6	14422	2403.61163			
Corrected Total	8	159665				

Root MSE	49.02664	R-Square	0.9097
Dependent Mean	159.11111	Adj R-Sq	0.8796
Coeff Var	30.81283		

Parameter Estimates								
		Parameter	Standard					
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	-9.39304	97.84918	-0.10	0.9267			
DAP	1	4.65325	1.71180	2.72	0.0347			
ALT	1	-2.36237	10.45763	-0.23	0.8288			

Gráfico de modelo 1



*** ANÁLISE DE REGRESSÃO - BIOMASSA COM DAP E ALT *** The REG Procedure

Model: MODEL2

Dependent Variable:

LBIOMA

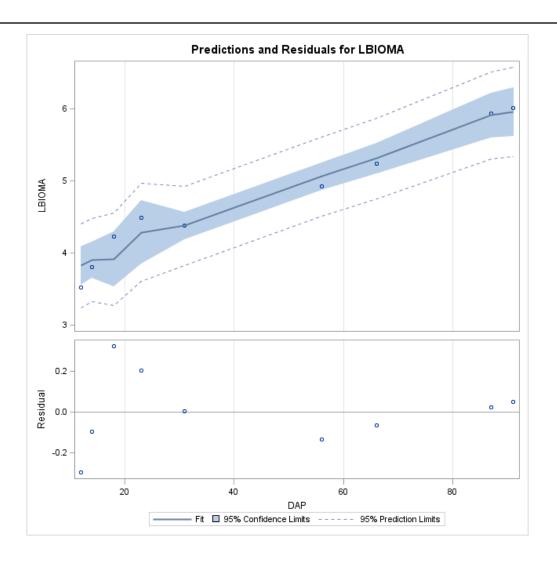
Number of Observations Read	9
Number of Observations Used	9

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	5.86419	2.93209	65.55	<.0001	
Error	6	0.26837	0.04473			
Corrected Total	8	6.13256	·			

Root MSE	0.21149	R-Square	0.9562
Dependent Mean	4.72899	Adj R-Sq	0.9417
Coeff Var	4.47222		

Parameter Estimates								
Parameter Standard								
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	3.18668	0.42210	7.55	0.0003			
DAP	1	0.02127	0.00738	2.88	0.0280			
ALT	1	0.03814	0.04511	0.85	0.4303			

Gráfico do modelo 2



Análise do modelo 3

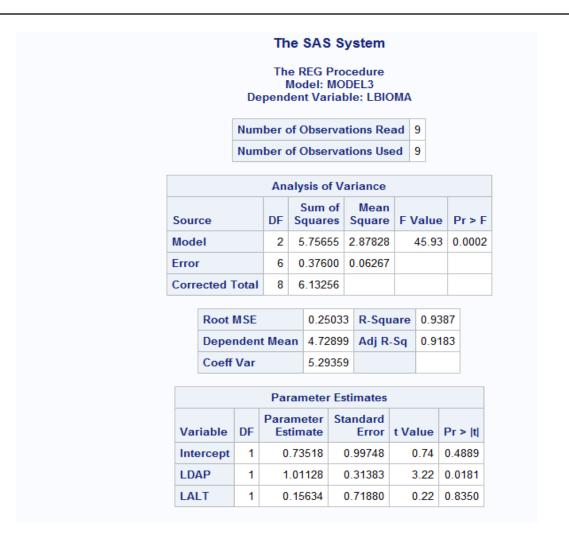
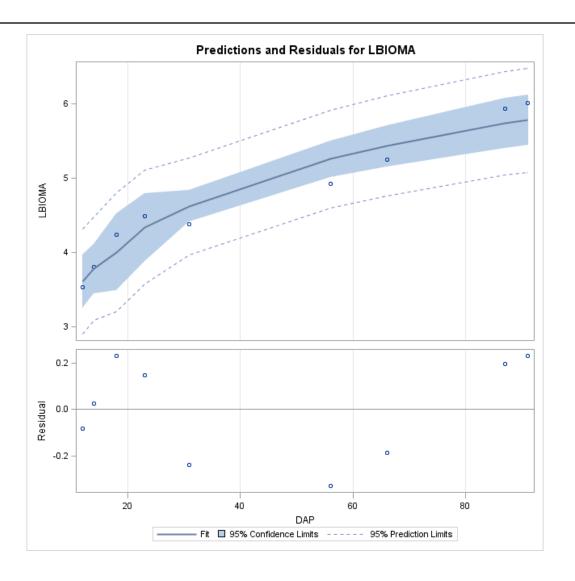


Gráfico de modelo 3



Exercício em classe

 Com dados de experimento com doses de N em cultivares de cevada plantadas no Cerrado de altitude (arquivo excel Dados_doses N-Cevada_Bahia.xlsx) testar 4 modelos matemáticos: linear simples, linear quadrático, log-log e log-inverso. Devo fazer um modelo por cultivar ou posso ter um modelo para todos os cultivares?

