Bioestatística — Prova Prática Final 2015

- Foram copiados 3 exercícios do livro Design of Esperiment: Statistical
 Principles of Research Design and Analysis, 2000. (Autor Robert O. Kuehl.
- Analisar estatisticamente cada um dos exercícios usando um programa SAS. Interpretar os resultados. Coloque também o programa SAS na folha de prova. Além dos comandos e PROCs necessários, utilize nos 3 programas os seguintes comandos/PROCs: PROC PRINT, LABEL, SPLIT, PROC FORMAT, TITLE1, FOOTNOTE1, FORMAT, COMMAX.
- Não esqueça de colocar o seu nome e número USP na folha de prova.
 Todos os dados deverão ser colocados no Excel e importados no SAS.
- Os exercícios 1 e 2 valem 3 pontos e o 3 vale 4 pontos.

1. An irrigation experiment was conducted in a randomized complete block design in a Valencia orange grove. Six irrigation treatments were used in eight blocks of trees. The data that follow are the weight in pounds of harvested fruit from each plot.

Method	Block							
	1	2	3	4	5	6	7	8
Trickle*	450	469	249	125	280	352	221	251
Basin	358	512	281	58	352	293	283	
Spray	331	402	183	70	258	281	219	186
Sprinkler +	317	423	379	63	289	239	269	46 357
Spray	479	341	404	115	182	349	276	100
Flood ource: Dr. R. R	245	380	263	62	336	282	171	182

Source: Dr. R. Roth and Dr. B. Gardner, Department of Soil and Water Science, University of Arizona.

A fertilizer trial on a range grass, blue grama, was conducted in a randomized complete block design by a management scientist. Five fertilizer treatments were randomly assigned to plots in each of five blocks. The data are $100 \times$ (percent phosphorus) in a plant tissue sample from each plot.

all tripler begans	R. Co	ar Young	Block	MIN	5
Treatment	1	2	3	4	5
No fertilizer	7.6	8.1	7.3	7.9	9.4
50 lb. nitrogen	7.3	7.7	7.7	7.7	8.2
100 lb. nitrogen	6.9	6.0	5.6	7.4	7.0
50 lb nitrogen					7.0
+ 75 lb P ₂ O ₅	10.8	11.2	9.0	12.9	11.6
100 lb nitrogen		SHYSTINE.	0	12.7	11.0
+ 75 lb P ₂ O ₅	9.6	9.3	12.0	10.6	10.4

Source: Dr. P. Ogden, Range Management, University of Arizona.

3. The self-inductance of coils with iron-oxide cores was measured under different temperature conditions of the measuring bridge. The coil temperature was held constant. Five coils were used for the experiment. The self-inductance of each coil was measured for each of four temperatures (22°, 23°, 24°, and 25°) for the measuring bridge. The temperatures were utilized in a random order for each coil. The data are percentage deviations from a standard.

Coil						
1	2	3	4	5		
1.400	0.264	0.478	1.010	0.629		
1.400	0.235	Transaction of the last of the				
1.375	The second second		100000000000000000000000000000000000000	0.620		
				0.495		
		1.400 0.235 1.375 0.212	1 2 3 1.400 0.264 0.478 1.400 0.235 0.467 1.375 0.212 0.444	1 2 3 4 1.400 0.264 0.478 1.010 1.400 0.235 0.467 0.990 1.375 0.212 0.444 0.968		

Source: H. Hamaker (1955), Experimental design in industry. Biometrics 11, 257–286.

Boa prova!!!